Effect of Concentration on emf of cell - Nernst Equation
CHXII03:ELECTROCHEMISTRY

329978 The e.m.f., of a Daniel cell at 298 K is \({{\rm{E}}_{\rm{1}}}\).
\(\left. {{\rm{Zn}}} \right \vert \left. {\mathop {{\rm{ZnS}}{{\rm{O}}_{\rm{4}}}}\limits_{\left( {{\rm{0}}{\rm{.001M}}} \right)} } \right\vert \left. {\mathop {{\rm{CuS}}{{\rm{O}}_{\rm{4}}}}\limits_{\left( {{\rm{1}}{\rm{.0M}}} \right)} } \right \vert {\rm{Cu}}\)
When the concentration of \({\rm{ZnS}}{{\rm{O}}_{\rm{4}}}\) is 1.0 M and that of \({\rm{CuS}}{{\rm{O}}_{\rm{4}}}\) is 0.01 M, the e.m.f., changed to \({{\rm{E}}_{\rm{2}}}\). What is the relationship between \({{\rm{E}}_{\rm{1}}}\,\,{\rm{and}}\,\,{{\rm{E}}_{\rm{2}}}\) ?

1 \({{\rm{E}}_{\rm{1}}}{\rm{ > }}{{\rm{E}}_{\rm{2}}}\)
2 \({{\rm{E}}_{\rm{1}}}{\rm{ < }}{{\rm{E}}_{\rm{2}}}\)
3 \({{\rm{E}}_{\rm{1}}}{\rm{ = }}{{\rm{E}}_{\rm{2}}}\)
4 \({{\rm{E}}_{\rm{2}}}{\rm{ = 0}} \ne {{\rm{E}}_{\rm{1}}}\)
CHXII03:ELECTROCHEMISTRY

329979 The correct representation of Nernst’s equation for half-cell reaction,
\(C{u^{2 + }}\left( {aq} \right) + {e^ - } \to C{u^ + }(aq)\,\,is\)

1 \({{\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}}{\rm{ = E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}^{\rm{o}}{\rm{ - }}\frac{{{\rm{0}}{\rm{.0591}}}}{{\rm{1}}}{\rm{log}}\frac{{\left[ {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right]}}{{\left[ {{\rm{C}}{{\rm{u}}^{\rm{ + }}}} \right]}}\)
2 \({{\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}}{\rm{ = E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}^{\rm{o}}{\rm{ - }}\frac{{{\rm{0}}{\rm{.0591}}}}{{\rm{1}}}{\rm{log}}\frac{{\left[ {{\rm{C}}{{\rm{u}}^{\rm{ + }}}} \right]}}{{\left[ {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right]}}\)
3 \({\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}^{\rm{o}}{\rm{ = }}{{\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}}{\rm{ - }}\frac{{{\rm{0}}{\rm{.0591}}}}{{\rm{2}}}{\rm{log}}\frac{{\left[ {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right]}}{{\left[ {{\rm{C}}{{\rm{u}}^{\rm{ + }}}} \right]}}\)
4 \({{\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}}{\rm{ = E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}^{\rm{o}}{\rm{ - }}\frac{{{\rm{0}}{\rm{.0591}}}}{{\rm{2}}}{\rm{log}}\frac{{\left[ {{\rm{C}}{{\rm{u}}^{\rm{ + }}}} \right]}}{{\left[ {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right]}}\)
CHXII03:ELECTROCHEMISTRY

329980 How much will the reduction potential of a hydrogen electrode change when its solution initially at \(\mathrm{pH}=0\) is neutralised to \(\mathrm{pH}=7\) :

1 Increases by \(0.059 \mathrm{~V}\)
2 Decreases by \(0.059 \mathrm{~V}\)
3 Increases by \(0.41 \mathrm{~V}\)
4 Decreases by \(0.41 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329981 For the reaction \({{\text{M}}^{{\text{n + }}}}\left( {{\text{aq}}} \right){\text{ + n}}{{\text{e}}^{\text{ - }}} \to {\text{M}}\left( {\text{s}} \right)\) select the best suitable representation of Nernst equation when the solid M is taken

1 \({{\rm{E}}_{\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}}}{\rm{ = E}}_{\left( {\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}} \right)}^{\rm{o}}{\rm{ - }}\frac{{{\rm{RT}}}}{{{\rm{nF}}}}{\rm{ln}}\frac{{\left[ {\rm{M}} \right]}}{{\left[ {{{\rm{M}}^{{\rm{n + }}}}} \right]}}\)
2 \({{\rm{E}}_{\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}}}{\rm{ = E}}_{\left( {\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}} \right)}^{\rm{o}}{\rm{ - }}\frac{{{\rm{RT}}}}{{{\rm{nF}}}}{\rm{ln}}\frac{{\rm{1}}}{{\left[ {{{\rm{M}}^{{\rm{n + }}}}} \right]}}\)
3 \({{\rm{E}}_{\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}}}{\rm{ = E}}_{\left( {\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}} \right)}^{\rm{o}}{\rm{ - }}\frac{{{\rm{RT}}}}{{{\rm{nF}}}}{\rm{ln}}\frac{{\left[ {{{\rm{M}}^{{\rm{n + }}}}} \right]}}{{\left[ {\rm{M}} \right]}}\)
4 \({{\rm{E}}_{\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}}}{\rm{ = E}}_{\left( {\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}} \right)}^{\rm{o}}{\rm{ - }}\frac{{{\rm{RT}}}}{{{\rm{nF}}}}{\rm{ln}}\left[ {{{\rm{M}}^{{\rm{n + }}}}} \right]\)
CHXII03:ELECTROCHEMISTRY

329978 The e.m.f., of a Daniel cell at 298 K is \({{\rm{E}}_{\rm{1}}}\).
\(\left. {{\rm{Zn}}} \right \vert \left. {\mathop {{\rm{ZnS}}{{\rm{O}}_{\rm{4}}}}\limits_{\left( {{\rm{0}}{\rm{.001M}}} \right)} } \right\vert \left. {\mathop {{\rm{CuS}}{{\rm{O}}_{\rm{4}}}}\limits_{\left( {{\rm{1}}{\rm{.0M}}} \right)} } \right \vert {\rm{Cu}}\)
When the concentration of \({\rm{ZnS}}{{\rm{O}}_{\rm{4}}}\) is 1.0 M and that of \({\rm{CuS}}{{\rm{O}}_{\rm{4}}}\) is 0.01 M, the e.m.f., changed to \({{\rm{E}}_{\rm{2}}}\). What is the relationship between \({{\rm{E}}_{\rm{1}}}\,\,{\rm{and}}\,\,{{\rm{E}}_{\rm{2}}}\) ?

1 \({{\rm{E}}_{\rm{1}}}{\rm{ > }}{{\rm{E}}_{\rm{2}}}\)
2 \({{\rm{E}}_{\rm{1}}}{\rm{ < }}{{\rm{E}}_{\rm{2}}}\)
3 \({{\rm{E}}_{\rm{1}}}{\rm{ = }}{{\rm{E}}_{\rm{2}}}\)
4 \({{\rm{E}}_{\rm{2}}}{\rm{ = 0}} \ne {{\rm{E}}_{\rm{1}}}\)
CHXII03:ELECTROCHEMISTRY

329979 The correct representation of Nernst’s equation for half-cell reaction,
\(C{u^{2 + }}\left( {aq} \right) + {e^ - } \to C{u^ + }(aq)\,\,is\)

1 \({{\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}}{\rm{ = E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}^{\rm{o}}{\rm{ - }}\frac{{{\rm{0}}{\rm{.0591}}}}{{\rm{1}}}{\rm{log}}\frac{{\left[ {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right]}}{{\left[ {{\rm{C}}{{\rm{u}}^{\rm{ + }}}} \right]}}\)
2 \({{\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}}{\rm{ = E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}^{\rm{o}}{\rm{ - }}\frac{{{\rm{0}}{\rm{.0591}}}}{{\rm{1}}}{\rm{log}}\frac{{\left[ {{\rm{C}}{{\rm{u}}^{\rm{ + }}}} \right]}}{{\left[ {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right]}}\)
3 \({\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}^{\rm{o}}{\rm{ = }}{{\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}}{\rm{ - }}\frac{{{\rm{0}}{\rm{.0591}}}}{{\rm{2}}}{\rm{log}}\frac{{\left[ {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right]}}{{\left[ {{\rm{C}}{{\rm{u}}^{\rm{ + }}}} \right]}}\)
4 \({{\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}}{\rm{ = E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}^{\rm{o}}{\rm{ - }}\frac{{{\rm{0}}{\rm{.0591}}}}{{\rm{2}}}{\rm{log}}\frac{{\left[ {{\rm{C}}{{\rm{u}}^{\rm{ + }}}} \right]}}{{\left[ {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right]}}\)
CHXII03:ELECTROCHEMISTRY

329980 How much will the reduction potential of a hydrogen electrode change when its solution initially at \(\mathrm{pH}=0\) is neutralised to \(\mathrm{pH}=7\) :

1 Increases by \(0.059 \mathrm{~V}\)
2 Decreases by \(0.059 \mathrm{~V}\)
3 Increases by \(0.41 \mathrm{~V}\)
4 Decreases by \(0.41 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329981 For the reaction \({{\text{M}}^{{\text{n + }}}}\left( {{\text{aq}}} \right){\text{ + n}}{{\text{e}}^{\text{ - }}} \to {\text{M}}\left( {\text{s}} \right)\) select the best suitable representation of Nernst equation when the solid M is taken

1 \({{\rm{E}}_{\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}}}{\rm{ = E}}_{\left( {\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}} \right)}^{\rm{o}}{\rm{ - }}\frac{{{\rm{RT}}}}{{{\rm{nF}}}}{\rm{ln}}\frac{{\left[ {\rm{M}} \right]}}{{\left[ {{{\rm{M}}^{{\rm{n + }}}}} \right]}}\)
2 \({{\rm{E}}_{\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}}}{\rm{ = E}}_{\left( {\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}} \right)}^{\rm{o}}{\rm{ - }}\frac{{{\rm{RT}}}}{{{\rm{nF}}}}{\rm{ln}}\frac{{\rm{1}}}{{\left[ {{{\rm{M}}^{{\rm{n + }}}}} \right]}}\)
3 \({{\rm{E}}_{\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}}}{\rm{ = E}}_{\left( {\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}} \right)}^{\rm{o}}{\rm{ - }}\frac{{{\rm{RT}}}}{{{\rm{nF}}}}{\rm{ln}}\frac{{\left[ {{{\rm{M}}^{{\rm{n + }}}}} \right]}}{{\left[ {\rm{M}} \right]}}\)
4 \({{\rm{E}}_{\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}}}{\rm{ = E}}_{\left( {\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}} \right)}^{\rm{o}}{\rm{ - }}\frac{{{\rm{RT}}}}{{{\rm{nF}}}}{\rm{ln}}\left[ {{{\rm{M}}^{{\rm{n + }}}}} \right]\)
CHXII03:ELECTROCHEMISTRY

329978 The e.m.f., of a Daniel cell at 298 K is \({{\rm{E}}_{\rm{1}}}\).
\(\left. {{\rm{Zn}}} \right \vert \left. {\mathop {{\rm{ZnS}}{{\rm{O}}_{\rm{4}}}}\limits_{\left( {{\rm{0}}{\rm{.001M}}} \right)} } \right\vert \left. {\mathop {{\rm{CuS}}{{\rm{O}}_{\rm{4}}}}\limits_{\left( {{\rm{1}}{\rm{.0M}}} \right)} } \right \vert {\rm{Cu}}\)
When the concentration of \({\rm{ZnS}}{{\rm{O}}_{\rm{4}}}\) is 1.0 M and that of \({\rm{CuS}}{{\rm{O}}_{\rm{4}}}\) is 0.01 M, the e.m.f., changed to \({{\rm{E}}_{\rm{2}}}\). What is the relationship between \({{\rm{E}}_{\rm{1}}}\,\,{\rm{and}}\,\,{{\rm{E}}_{\rm{2}}}\) ?

1 \({{\rm{E}}_{\rm{1}}}{\rm{ > }}{{\rm{E}}_{\rm{2}}}\)
2 \({{\rm{E}}_{\rm{1}}}{\rm{ < }}{{\rm{E}}_{\rm{2}}}\)
3 \({{\rm{E}}_{\rm{1}}}{\rm{ = }}{{\rm{E}}_{\rm{2}}}\)
4 \({{\rm{E}}_{\rm{2}}}{\rm{ = 0}} \ne {{\rm{E}}_{\rm{1}}}\)
CHXII03:ELECTROCHEMISTRY

329979 The correct representation of Nernst’s equation for half-cell reaction,
\(C{u^{2 + }}\left( {aq} \right) + {e^ - } \to C{u^ + }(aq)\,\,is\)

1 \({{\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}}{\rm{ = E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}^{\rm{o}}{\rm{ - }}\frac{{{\rm{0}}{\rm{.0591}}}}{{\rm{1}}}{\rm{log}}\frac{{\left[ {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right]}}{{\left[ {{\rm{C}}{{\rm{u}}^{\rm{ + }}}} \right]}}\)
2 \({{\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}}{\rm{ = E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}^{\rm{o}}{\rm{ - }}\frac{{{\rm{0}}{\rm{.0591}}}}{{\rm{1}}}{\rm{log}}\frac{{\left[ {{\rm{C}}{{\rm{u}}^{\rm{ + }}}} \right]}}{{\left[ {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right]}}\)
3 \({\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}^{\rm{o}}{\rm{ = }}{{\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}}{\rm{ - }}\frac{{{\rm{0}}{\rm{.0591}}}}{{\rm{2}}}{\rm{log}}\frac{{\left[ {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right]}}{{\left[ {{\rm{C}}{{\rm{u}}^{\rm{ + }}}} \right]}}\)
4 \({{\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}}{\rm{ = E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}^{\rm{o}}{\rm{ - }}\frac{{{\rm{0}}{\rm{.0591}}}}{{\rm{2}}}{\rm{log}}\frac{{\left[ {{\rm{C}}{{\rm{u}}^{\rm{ + }}}} \right]}}{{\left[ {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right]}}\)
CHXII03:ELECTROCHEMISTRY

329980 How much will the reduction potential of a hydrogen electrode change when its solution initially at \(\mathrm{pH}=0\) is neutralised to \(\mathrm{pH}=7\) :

1 Increases by \(0.059 \mathrm{~V}\)
2 Decreases by \(0.059 \mathrm{~V}\)
3 Increases by \(0.41 \mathrm{~V}\)
4 Decreases by \(0.41 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329981 For the reaction \({{\text{M}}^{{\text{n + }}}}\left( {{\text{aq}}} \right){\text{ + n}}{{\text{e}}^{\text{ - }}} \to {\text{M}}\left( {\text{s}} \right)\) select the best suitable representation of Nernst equation when the solid M is taken

1 \({{\rm{E}}_{\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}}}{\rm{ = E}}_{\left( {\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}} \right)}^{\rm{o}}{\rm{ - }}\frac{{{\rm{RT}}}}{{{\rm{nF}}}}{\rm{ln}}\frac{{\left[ {\rm{M}} \right]}}{{\left[ {{{\rm{M}}^{{\rm{n + }}}}} \right]}}\)
2 \({{\rm{E}}_{\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}}}{\rm{ = E}}_{\left( {\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}} \right)}^{\rm{o}}{\rm{ - }}\frac{{{\rm{RT}}}}{{{\rm{nF}}}}{\rm{ln}}\frac{{\rm{1}}}{{\left[ {{{\rm{M}}^{{\rm{n + }}}}} \right]}}\)
3 \({{\rm{E}}_{\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}}}{\rm{ = E}}_{\left( {\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}} \right)}^{\rm{o}}{\rm{ - }}\frac{{{\rm{RT}}}}{{{\rm{nF}}}}{\rm{ln}}\frac{{\left[ {{{\rm{M}}^{{\rm{n + }}}}} \right]}}{{\left[ {\rm{M}} \right]}}\)
4 \({{\rm{E}}_{\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}}}{\rm{ = E}}_{\left( {\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}} \right)}^{\rm{o}}{\rm{ - }}\frac{{{\rm{RT}}}}{{{\rm{nF}}}}{\rm{ln}}\left[ {{{\rm{M}}^{{\rm{n + }}}}} \right]\)
CHXII03:ELECTROCHEMISTRY

329978 The e.m.f., of a Daniel cell at 298 K is \({{\rm{E}}_{\rm{1}}}\).
\(\left. {{\rm{Zn}}} \right \vert \left. {\mathop {{\rm{ZnS}}{{\rm{O}}_{\rm{4}}}}\limits_{\left( {{\rm{0}}{\rm{.001M}}} \right)} } \right\vert \left. {\mathop {{\rm{CuS}}{{\rm{O}}_{\rm{4}}}}\limits_{\left( {{\rm{1}}{\rm{.0M}}} \right)} } \right \vert {\rm{Cu}}\)
When the concentration of \({\rm{ZnS}}{{\rm{O}}_{\rm{4}}}\) is 1.0 M and that of \({\rm{CuS}}{{\rm{O}}_{\rm{4}}}\) is 0.01 M, the e.m.f., changed to \({{\rm{E}}_{\rm{2}}}\). What is the relationship between \({{\rm{E}}_{\rm{1}}}\,\,{\rm{and}}\,\,{{\rm{E}}_{\rm{2}}}\) ?

1 \({{\rm{E}}_{\rm{1}}}{\rm{ > }}{{\rm{E}}_{\rm{2}}}\)
2 \({{\rm{E}}_{\rm{1}}}{\rm{ < }}{{\rm{E}}_{\rm{2}}}\)
3 \({{\rm{E}}_{\rm{1}}}{\rm{ = }}{{\rm{E}}_{\rm{2}}}\)
4 \({{\rm{E}}_{\rm{2}}}{\rm{ = 0}} \ne {{\rm{E}}_{\rm{1}}}\)
CHXII03:ELECTROCHEMISTRY

329979 The correct representation of Nernst’s equation for half-cell reaction,
\(C{u^{2 + }}\left( {aq} \right) + {e^ - } \to C{u^ + }(aq)\,\,is\)

1 \({{\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}}{\rm{ = E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}^{\rm{o}}{\rm{ - }}\frac{{{\rm{0}}{\rm{.0591}}}}{{\rm{1}}}{\rm{log}}\frac{{\left[ {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right]}}{{\left[ {{\rm{C}}{{\rm{u}}^{\rm{ + }}}} \right]}}\)
2 \({{\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}}{\rm{ = E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}^{\rm{o}}{\rm{ - }}\frac{{{\rm{0}}{\rm{.0591}}}}{{\rm{1}}}{\rm{log}}\frac{{\left[ {{\rm{C}}{{\rm{u}}^{\rm{ + }}}} \right]}}{{\left[ {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right]}}\)
3 \({\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}^{\rm{o}}{\rm{ = }}{{\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}}{\rm{ - }}\frac{{{\rm{0}}{\rm{.0591}}}}{{\rm{2}}}{\rm{log}}\frac{{\left[ {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right]}}{{\left[ {{\rm{C}}{{\rm{u}}^{\rm{ + }}}} \right]}}\)
4 \({{\rm{E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}}{\rm{ = E}}_{\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right \vert {\rm{C}}{{\rm{u}}^{\rm{ + }}}}^{\rm{o}}{\rm{ - }}\frac{{{\rm{0}}{\rm{.0591}}}}{{\rm{2}}}{\rm{log}}\frac{{\left[ {{\rm{C}}{{\rm{u}}^{\rm{ + }}}} \right]}}{{\left[ {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}} \right]}}\)
CHXII03:ELECTROCHEMISTRY

329980 How much will the reduction potential of a hydrogen electrode change when its solution initially at \(\mathrm{pH}=0\) is neutralised to \(\mathrm{pH}=7\) :

1 Increases by \(0.059 \mathrm{~V}\)
2 Decreases by \(0.059 \mathrm{~V}\)
3 Increases by \(0.41 \mathrm{~V}\)
4 Decreases by \(0.41 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329981 For the reaction \({{\text{M}}^{{\text{n + }}}}\left( {{\text{aq}}} \right){\text{ + n}}{{\text{e}}^{\text{ - }}} \to {\text{M}}\left( {\text{s}} \right)\) select the best suitable representation of Nernst equation when the solid M is taken

1 \({{\rm{E}}_{\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}}}{\rm{ = E}}_{\left( {\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}} \right)}^{\rm{o}}{\rm{ - }}\frac{{{\rm{RT}}}}{{{\rm{nF}}}}{\rm{ln}}\frac{{\left[ {\rm{M}} \right]}}{{\left[ {{{\rm{M}}^{{\rm{n + }}}}} \right]}}\)
2 \({{\rm{E}}_{\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}}}{\rm{ = E}}_{\left( {\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}} \right)}^{\rm{o}}{\rm{ - }}\frac{{{\rm{RT}}}}{{{\rm{nF}}}}{\rm{ln}}\frac{{\rm{1}}}{{\left[ {{{\rm{M}}^{{\rm{n + }}}}} \right]}}\)
3 \({{\rm{E}}_{\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}}}{\rm{ = E}}_{\left( {\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}} \right)}^{\rm{o}}{\rm{ - }}\frac{{{\rm{RT}}}}{{{\rm{nF}}}}{\rm{ln}}\frac{{\left[ {{{\rm{M}}^{{\rm{n + }}}}} \right]}}{{\left[ {\rm{M}} \right]}}\)
4 \({{\rm{E}}_{\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}}}{\rm{ = E}}_{\left( {\left. {{{\rm{M}}^{{\rm{n + }}}}} \right \vert {\rm{M}}} \right)}^{\rm{o}}{\rm{ - }}\frac{{{\rm{RT}}}}{{{\rm{nF}}}}{\rm{ln}}\left[ {{{\rm{M}}^{{\rm{n + }}}}} \right]\)