Effect of Concentration on emf of cell - Nernst Equation
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII03:ELECTROCHEMISTRY

329974 The standard emf of the cell, \(\left. {{\rm{Cd(s)}}} \right \vert \left. {{\rm{CdC}}{{\rm{l}}_{\rm{2}}}{\rm{(aq)}}} \right\vert \left. {{\rm{AgCl(s)}}} \right \vert {\rm{Ag(s)}}\) in which the cell reaction is,
\[\begin{array}{l}
{\rm{Cd}}({\rm{s}}) + {\rm{2AgCl}}({\rm{s}}) \to \\
{\rm{2Ag}}({\rm{s}}) + {\rm{C}}{{\rm{d}}^{{\rm{2 + }}}}({\rm{aq}}) + {\rm{2C}}{{\rm{l}}^ - }({\rm{aq}})
\end{array}\] is \({\rm{0}}{\rm{.6915}}{\mkern 1mu} {\mkern 1mu} {\rm{V}}{\mkern 1mu} {\mkern 1mu} {\rm{at}}{\mkern 1mu} {\mkern 1mu} {\rm{0^\circ C}}{\mkern 1mu} \) and \({\rm{0}}{\rm{.6753}}{\mkern 1mu} {\mkern 1mu} {\rm{V}}{\mkern 1mu} {\mkern 1mu} {\rm{at}}{\mkern 1mu} {\mkern 1mu} {\rm{25}}^\circ {\rm{C}}\). The \({\rm{\Delta H}}\) reaction at \({\rm{25^\circ C}}\) is

1 – 167.26 kJ
2 – 176 kJ
3 + 123.5 kJ
4 – 234.7 kJ
CHXII03:ELECTROCHEMISTRY

329975 The standard emf for the given cell reaction, \(\mathrm{Zn}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}+\mathrm{Zn}^{2+}\) is \(1.10 \mathrm{~V}\) at \(25^{\circ} \mathrm{C}\). The emf for the cell reaction, when \(0.1{\text{M C}}{{\text{u}}^{2 + }}\) and \(0.1{\text{M Z}}{{\text{n}}^{2 + }}\) solutions are used at \(25^{\circ} \mathrm{C}\) is

1 \(1.10 \mathrm{~V}\)
2 \(-1.10 \mathrm{~V}\)
3 \(2.20 \mathrm{~V}\)
4 \(-2.20 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329976 Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below :
Then the species undergoing disproportionation is
supporting img

1 \({\rm{B}}{{\rm{r}}_{\rm{2}}}\)
2 \({\rm{HBrO}}\)
3 \({\rm{BrO}}_{\rm{4}}^{\rm{ - }}\)
4 \({\rm{BrO}}_{\rm{3}}^{\rm{ - }}\)
CHXII03:ELECTROCHEMISTRY

329977 If \({\rm{E}}_{\left. {{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}} \right \vert {\rm{Fe}}}^{\rm{^\circ }}{\rm{ = - 0}}{\rm{.441V}}\,\,{\rm{and}}\,\,{\rm{E}}_{\left. {{\rm{F}}{{\rm{e}}^{{\rm{3 + }}}}} \right \vert {\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}}^{\rm{^\circ }}{\rm{ = - 0}}{\rm{.771V}}\), the standard EMF of the reaction, \({\rm{Fe + 2F}}{{\rm{e}}^{{\rm{3 + }}}}{\rm{3F}}{{\rm{e}}^{{\rm{2 + }}}}\) will be

1 \({\rm{1}}{\rm{.653 V}}\)
2 \({\rm{1}}{\rm{.212 V}}\)
3 \({\rm{0}}{\rm{.111 V}}\)
4 \({\rm{ - 0}}{\rm{.330 V}}\)
CHXII03:ELECTROCHEMISTRY

329974 The standard emf of the cell, \(\left. {{\rm{Cd(s)}}} \right \vert \left. {{\rm{CdC}}{{\rm{l}}_{\rm{2}}}{\rm{(aq)}}} \right\vert \left. {{\rm{AgCl(s)}}} \right \vert {\rm{Ag(s)}}\) in which the cell reaction is,
\[\begin{array}{l}
{\rm{Cd}}({\rm{s}}) + {\rm{2AgCl}}({\rm{s}}) \to \\
{\rm{2Ag}}({\rm{s}}) + {\rm{C}}{{\rm{d}}^{{\rm{2 + }}}}({\rm{aq}}) + {\rm{2C}}{{\rm{l}}^ - }({\rm{aq}})
\end{array}\] is \({\rm{0}}{\rm{.6915}}{\mkern 1mu} {\mkern 1mu} {\rm{V}}{\mkern 1mu} {\mkern 1mu} {\rm{at}}{\mkern 1mu} {\mkern 1mu} {\rm{0^\circ C}}{\mkern 1mu} \) and \({\rm{0}}{\rm{.6753}}{\mkern 1mu} {\mkern 1mu} {\rm{V}}{\mkern 1mu} {\mkern 1mu} {\rm{at}}{\mkern 1mu} {\mkern 1mu} {\rm{25}}^\circ {\rm{C}}\). The \({\rm{\Delta H}}\) reaction at \({\rm{25^\circ C}}\) is

1 – 167.26 kJ
2 – 176 kJ
3 + 123.5 kJ
4 – 234.7 kJ
CHXII03:ELECTROCHEMISTRY

329975 The standard emf for the given cell reaction, \(\mathrm{Zn}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}+\mathrm{Zn}^{2+}\) is \(1.10 \mathrm{~V}\) at \(25^{\circ} \mathrm{C}\). The emf for the cell reaction, when \(0.1{\text{M C}}{{\text{u}}^{2 + }}\) and \(0.1{\text{M Z}}{{\text{n}}^{2 + }}\) solutions are used at \(25^{\circ} \mathrm{C}\) is

1 \(1.10 \mathrm{~V}\)
2 \(-1.10 \mathrm{~V}\)
3 \(2.20 \mathrm{~V}\)
4 \(-2.20 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329976 Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below :
Then the species undergoing disproportionation is
supporting img

1 \({\rm{B}}{{\rm{r}}_{\rm{2}}}\)
2 \({\rm{HBrO}}\)
3 \({\rm{BrO}}_{\rm{4}}^{\rm{ - }}\)
4 \({\rm{BrO}}_{\rm{3}}^{\rm{ - }}\)
CHXII03:ELECTROCHEMISTRY

329977 If \({\rm{E}}_{\left. {{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}} \right \vert {\rm{Fe}}}^{\rm{^\circ }}{\rm{ = - 0}}{\rm{.441V}}\,\,{\rm{and}}\,\,{\rm{E}}_{\left. {{\rm{F}}{{\rm{e}}^{{\rm{3 + }}}}} \right \vert {\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}}^{\rm{^\circ }}{\rm{ = - 0}}{\rm{.771V}}\), the standard EMF of the reaction, \({\rm{Fe + 2F}}{{\rm{e}}^{{\rm{3 + }}}}{\rm{3F}}{{\rm{e}}^{{\rm{2 + }}}}\) will be

1 \({\rm{1}}{\rm{.653 V}}\)
2 \({\rm{1}}{\rm{.212 V}}\)
3 \({\rm{0}}{\rm{.111 V}}\)
4 \({\rm{ - 0}}{\rm{.330 V}}\)
CHXII03:ELECTROCHEMISTRY

329974 The standard emf of the cell, \(\left. {{\rm{Cd(s)}}} \right \vert \left. {{\rm{CdC}}{{\rm{l}}_{\rm{2}}}{\rm{(aq)}}} \right\vert \left. {{\rm{AgCl(s)}}} \right \vert {\rm{Ag(s)}}\) in which the cell reaction is,
\[\begin{array}{l}
{\rm{Cd}}({\rm{s}}) + {\rm{2AgCl}}({\rm{s}}) \to \\
{\rm{2Ag}}({\rm{s}}) + {\rm{C}}{{\rm{d}}^{{\rm{2 + }}}}({\rm{aq}}) + {\rm{2C}}{{\rm{l}}^ - }({\rm{aq}})
\end{array}\] is \({\rm{0}}{\rm{.6915}}{\mkern 1mu} {\mkern 1mu} {\rm{V}}{\mkern 1mu} {\mkern 1mu} {\rm{at}}{\mkern 1mu} {\mkern 1mu} {\rm{0^\circ C}}{\mkern 1mu} \) and \({\rm{0}}{\rm{.6753}}{\mkern 1mu} {\mkern 1mu} {\rm{V}}{\mkern 1mu} {\mkern 1mu} {\rm{at}}{\mkern 1mu} {\mkern 1mu} {\rm{25}}^\circ {\rm{C}}\). The \({\rm{\Delta H}}\) reaction at \({\rm{25^\circ C}}\) is

1 – 167.26 kJ
2 – 176 kJ
3 + 123.5 kJ
4 – 234.7 kJ
CHXII03:ELECTROCHEMISTRY

329975 The standard emf for the given cell reaction, \(\mathrm{Zn}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}+\mathrm{Zn}^{2+}\) is \(1.10 \mathrm{~V}\) at \(25^{\circ} \mathrm{C}\). The emf for the cell reaction, when \(0.1{\text{M C}}{{\text{u}}^{2 + }}\) and \(0.1{\text{M Z}}{{\text{n}}^{2 + }}\) solutions are used at \(25^{\circ} \mathrm{C}\) is

1 \(1.10 \mathrm{~V}\)
2 \(-1.10 \mathrm{~V}\)
3 \(2.20 \mathrm{~V}\)
4 \(-2.20 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329976 Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below :
Then the species undergoing disproportionation is
supporting img

1 \({\rm{B}}{{\rm{r}}_{\rm{2}}}\)
2 \({\rm{HBrO}}\)
3 \({\rm{BrO}}_{\rm{4}}^{\rm{ - }}\)
4 \({\rm{BrO}}_{\rm{3}}^{\rm{ - }}\)
CHXII03:ELECTROCHEMISTRY

329977 If \({\rm{E}}_{\left. {{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}} \right \vert {\rm{Fe}}}^{\rm{^\circ }}{\rm{ = - 0}}{\rm{.441V}}\,\,{\rm{and}}\,\,{\rm{E}}_{\left. {{\rm{F}}{{\rm{e}}^{{\rm{3 + }}}}} \right \vert {\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}}^{\rm{^\circ }}{\rm{ = - 0}}{\rm{.771V}}\), the standard EMF of the reaction, \({\rm{Fe + 2F}}{{\rm{e}}^{{\rm{3 + }}}}{\rm{3F}}{{\rm{e}}^{{\rm{2 + }}}}\) will be

1 \({\rm{1}}{\rm{.653 V}}\)
2 \({\rm{1}}{\rm{.212 V}}\)
3 \({\rm{0}}{\rm{.111 V}}\)
4 \({\rm{ - 0}}{\rm{.330 V}}\)
CHXII03:ELECTROCHEMISTRY

329974 The standard emf of the cell, \(\left. {{\rm{Cd(s)}}} \right \vert \left. {{\rm{CdC}}{{\rm{l}}_{\rm{2}}}{\rm{(aq)}}} \right\vert \left. {{\rm{AgCl(s)}}} \right \vert {\rm{Ag(s)}}\) in which the cell reaction is,
\[\begin{array}{l}
{\rm{Cd}}({\rm{s}}) + {\rm{2AgCl}}({\rm{s}}) \to \\
{\rm{2Ag}}({\rm{s}}) + {\rm{C}}{{\rm{d}}^{{\rm{2 + }}}}({\rm{aq}}) + {\rm{2C}}{{\rm{l}}^ - }({\rm{aq}})
\end{array}\] is \({\rm{0}}{\rm{.6915}}{\mkern 1mu} {\mkern 1mu} {\rm{V}}{\mkern 1mu} {\mkern 1mu} {\rm{at}}{\mkern 1mu} {\mkern 1mu} {\rm{0^\circ C}}{\mkern 1mu} \) and \({\rm{0}}{\rm{.6753}}{\mkern 1mu} {\mkern 1mu} {\rm{V}}{\mkern 1mu} {\mkern 1mu} {\rm{at}}{\mkern 1mu} {\mkern 1mu} {\rm{25}}^\circ {\rm{C}}\). The \({\rm{\Delta H}}\) reaction at \({\rm{25^\circ C}}\) is

1 – 167.26 kJ
2 – 176 kJ
3 + 123.5 kJ
4 – 234.7 kJ
CHXII03:ELECTROCHEMISTRY

329975 The standard emf for the given cell reaction, \(\mathrm{Zn}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}+\mathrm{Zn}^{2+}\) is \(1.10 \mathrm{~V}\) at \(25^{\circ} \mathrm{C}\). The emf for the cell reaction, when \(0.1{\text{M C}}{{\text{u}}^{2 + }}\) and \(0.1{\text{M Z}}{{\text{n}}^{2 + }}\) solutions are used at \(25^{\circ} \mathrm{C}\) is

1 \(1.10 \mathrm{~V}\)
2 \(-1.10 \mathrm{~V}\)
3 \(2.20 \mathrm{~V}\)
4 \(-2.20 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329976 Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below :
Then the species undergoing disproportionation is
supporting img

1 \({\rm{B}}{{\rm{r}}_{\rm{2}}}\)
2 \({\rm{HBrO}}\)
3 \({\rm{BrO}}_{\rm{4}}^{\rm{ - }}\)
4 \({\rm{BrO}}_{\rm{3}}^{\rm{ - }}\)
CHXII03:ELECTROCHEMISTRY

329977 If \({\rm{E}}_{\left. {{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}} \right \vert {\rm{Fe}}}^{\rm{^\circ }}{\rm{ = - 0}}{\rm{.441V}}\,\,{\rm{and}}\,\,{\rm{E}}_{\left. {{\rm{F}}{{\rm{e}}^{{\rm{3 + }}}}} \right \vert {\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}}^{\rm{^\circ }}{\rm{ = - 0}}{\rm{.771V}}\), the standard EMF of the reaction, \({\rm{Fe + 2F}}{{\rm{e}}^{{\rm{3 + }}}}{\rm{3F}}{{\rm{e}}^{{\rm{2 + }}}}\) will be

1 \({\rm{1}}{\rm{.653 V}}\)
2 \({\rm{1}}{\rm{.212 V}}\)
3 \({\rm{0}}{\rm{.111 V}}\)
4 \({\rm{ - 0}}{\rm{.330 V}}\)