Effect of Concentration on emf of cell - Nernst Equation
CHXII03:ELECTROCHEMISTRY

329969 Given that \({\rm{E}}_{\left. {{\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}}} \right \vert {\rm{Zn}}}^{\rm{o}}{\rm{ = - 0}}{\rm{.763}}\,\,{\rm{V}}\) and \({\rm{E}}_{\left. {{\rm{C}}{{\rm{d}}^{{\rm{2 + }}}}} \right \vert {\rm{Cd}}}^{\rm{o}}{\rm{ = - 0}}{\rm{.403}}\,\,{\rm{V}}\), the emf of the following cell: \({\rm{Zn/Z}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{,0}}{\rm{.004M//C}}{{\rm{d}}^{{\rm{2 + }}}}{\rm{,0}}{\rm{.2M/Cd}}\)

1 \({\rm{E = + 0}}{\rm{.36 + }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.2}}}}{{{\rm{0}}{\rm{.004}}}}} \right)} \right]\)
2 \({\rm{E = - 0}}{\rm{.36 + }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.2}}}}{{{\rm{0}}{\rm{.004}}}}} \right)} \right]\)
3 \({\rm{E = + 0}}{\rm{.36 - }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.004}}}}{{{\rm{0}}{\rm{.2}}}}} \right)} \right]\)
4 \({\rm{E = - 0}}{\rm{.36 + }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.004}}}}{{{\rm{0}}{\rm{.2}}}}} \right)} \right]\)
CHXII03:ELECTROCHEMISTRY

329970 For \({\rm{C}}{{\rm{r}}_{\rm{2}}}{\rm{O}}_{\rm{7}}^{{\rm{2 - }}}{\rm{ + 14}}{{\rm{H}}^{\rm{ + }}}{\rm{ + 6}}{{\rm{e}}^{\rm{ - }}} \to {\rm{2C}}{{\rm{r}}^{{\rm{3 + }}}}{\rm{ + 7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\), \({{\rm{E}}^{\rm{o}}}{\rm{ = 1}}{\rm{.33}}\,\,{\rm{V}}\,\,{\rm{at}}\,\,\left[ {{\rm{C}}{{\rm{r}}_{\rm{2}}}{\rm{O}}_{\rm{7}}^{{\rm{2 - }}}} \right]{\rm{ = 4}}{\rm{.5}}\,\,{\rm{mollimole}}\), \(\left[ {{\rm{C}}{{\rm{r}}^{{\rm{3 + }}}}} \right]{\rm{ = 15}}\) millimole, E is 1.067 V. The pH of the solution is nearly equal to

1 2
2 3
3 5
4 4
CHXII03:ELECTROCHEMISTRY

329971 If \({\rm{E^\circ }}\left( {{\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{,Zn}}} \right) = - 0.763{\rm{V}}\) and \({\rm{E^\circ }}\left( {{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}{\rm{,Fe}}} \right) = - 0.44{\rm{V}}\), then the emf of the cell
\({\rm{Zn}}\left \vert {{\rm{Z}}{{\rm{n}}^{2 + }}(a = 0.001)} \right \vert \left \vert {{\rm{F}}{{\rm{e}}^{2 + }}({\rm{a}} = 0.005)} \right \vert {\rm{Fe}}\) is

1 equal to \(0.323 \mathrm{~V}\)
2 less than \(0.323 \mathrm{~V}\)
3 greater than \(0.323 \mathrm{~V}\)
4 equal to \(1.103 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329972 The emf of the following cell at 298 K is \(\left. {{\rm{Fe(s)}}} \right \vert \left. {{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}\left( {{\rm{0}}{\rm{.001M}}} \right)} \right\vert \left. {{{\rm{H}}^{\rm{ + }}}{\rm{(1M)}}} \right \vert \left. {{{\rm{H}}_{\rm{2}}}{\rm{(g)(1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar)}}} \right \vert {\rm{Pt(s)}}\) \({\rm{Given}}\,\,{\rm{E}}_{{\rm{(F}}{{\rm{e}}^{{\rm{2 + }}}}{\rm{/Fe)}}}^{\rm{o}}{\rm{ = - 0}}{\rm{.44V}}\)

1 0.44 V
2 0.53 V
3 0.35 V
4 Data insufficient
CHXII03:ELECTROCHEMISTRY

329973 The EMF of the cell, \({\rm{Mg}}\left \vert {{\rm{M}}{{\rm{g}}^{2 + }}(0.01{\rm{M}})} \right \vert \left \vert {{\rm{S}}{{\rm{n}}^{2 + }}(0.1{\rm{M}})} \right \vert {\rm{Sn}}\) at \(298\;{\rm{K}}\) is \(\left( {{\rm{E}}{^\circ _{{\rm{M}}{{\rm{g}}^{2 + }}/{\rm{Mg}}}} = - 2.34V,{\rm{E}}{^\circ _{{\rm{S}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{/Sn}}}} = - 0.14\;{\rm{V}}} \right)\)

1 \(2.17\;{\rm{V}}\)
2 \(2.23\;{\rm{V }}\)
3 \(2.51\;{\rm{V}}\)
4 \(2.45\;{\rm{V}}\)
CHXII03:ELECTROCHEMISTRY

329969 Given that \({\rm{E}}_{\left. {{\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}}} \right \vert {\rm{Zn}}}^{\rm{o}}{\rm{ = - 0}}{\rm{.763}}\,\,{\rm{V}}\) and \({\rm{E}}_{\left. {{\rm{C}}{{\rm{d}}^{{\rm{2 + }}}}} \right \vert {\rm{Cd}}}^{\rm{o}}{\rm{ = - 0}}{\rm{.403}}\,\,{\rm{V}}\), the emf of the following cell: \({\rm{Zn/Z}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{,0}}{\rm{.004M//C}}{{\rm{d}}^{{\rm{2 + }}}}{\rm{,0}}{\rm{.2M/Cd}}\)

1 \({\rm{E = + 0}}{\rm{.36 + }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.2}}}}{{{\rm{0}}{\rm{.004}}}}} \right)} \right]\)
2 \({\rm{E = - 0}}{\rm{.36 + }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.2}}}}{{{\rm{0}}{\rm{.004}}}}} \right)} \right]\)
3 \({\rm{E = + 0}}{\rm{.36 - }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.004}}}}{{{\rm{0}}{\rm{.2}}}}} \right)} \right]\)
4 \({\rm{E = - 0}}{\rm{.36 + }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.004}}}}{{{\rm{0}}{\rm{.2}}}}} \right)} \right]\)
CHXII03:ELECTROCHEMISTRY

329970 For \({\rm{C}}{{\rm{r}}_{\rm{2}}}{\rm{O}}_{\rm{7}}^{{\rm{2 - }}}{\rm{ + 14}}{{\rm{H}}^{\rm{ + }}}{\rm{ + 6}}{{\rm{e}}^{\rm{ - }}} \to {\rm{2C}}{{\rm{r}}^{{\rm{3 + }}}}{\rm{ + 7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\), \({{\rm{E}}^{\rm{o}}}{\rm{ = 1}}{\rm{.33}}\,\,{\rm{V}}\,\,{\rm{at}}\,\,\left[ {{\rm{C}}{{\rm{r}}_{\rm{2}}}{\rm{O}}_{\rm{7}}^{{\rm{2 - }}}} \right]{\rm{ = 4}}{\rm{.5}}\,\,{\rm{mollimole}}\), \(\left[ {{\rm{C}}{{\rm{r}}^{{\rm{3 + }}}}} \right]{\rm{ = 15}}\) millimole, E is 1.067 V. The pH of the solution is nearly equal to

1 2
2 3
3 5
4 4
CHXII03:ELECTROCHEMISTRY

329971 If \({\rm{E^\circ }}\left( {{\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{,Zn}}} \right) = - 0.763{\rm{V}}\) and \({\rm{E^\circ }}\left( {{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}{\rm{,Fe}}} \right) = - 0.44{\rm{V}}\), then the emf of the cell
\({\rm{Zn}}\left \vert {{\rm{Z}}{{\rm{n}}^{2 + }}(a = 0.001)} \right \vert \left \vert {{\rm{F}}{{\rm{e}}^{2 + }}({\rm{a}} = 0.005)} \right \vert {\rm{Fe}}\) is

1 equal to \(0.323 \mathrm{~V}\)
2 less than \(0.323 \mathrm{~V}\)
3 greater than \(0.323 \mathrm{~V}\)
4 equal to \(1.103 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329972 The emf of the following cell at 298 K is \(\left. {{\rm{Fe(s)}}} \right \vert \left. {{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}\left( {{\rm{0}}{\rm{.001M}}} \right)} \right\vert \left. {{{\rm{H}}^{\rm{ + }}}{\rm{(1M)}}} \right \vert \left. {{{\rm{H}}_{\rm{2}}}{\rm{(g)(1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar)}}} \right \vert {\rm{Pt(s)}}\) \({\rm{Given}}\,\,{\rm{E}}_{{\rm{(F}}{{\rm{e}}^{{\rm{2 + }}}}{\rm{/Fe)}}}^{\rm{o}}{\rm{ = - 0}}{\rm{.44V}}\)

1 0.44 V
2 0.53 V
3 0.35 V
4 Data insufficient
CHXII03:ELECTROCHEMISTRY

329973 The EMF of the cell, \({\rm{Mg}}\left \vert {{\rm{M}}{{\rm{g}}^{2 + }}(0.01{\rm{M}})} \right \vert \left \vert {{\rm{S}}{{\rm{n}}^{2 + }}(0.1{\rm{M}})} \right \vert {\rm{Sn}}\) at \(298\;{\rm{K}}\) is \(\left( {{\rm{E}}{^\circ _{{\rm{M}}{{\rm{g}}^{2 + }}/{\rm{Mg}}}} = - 2.34V,{\rm{E}}{^\circ _{{\rm{S}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{/Sn}}}} = - 0.14\;{\rm{V}}} \right)\)

1 \(2.17\;{\rm{V}}\)
2 \(2.23\;{\rm{V }}\)
3 \(2.51\;{\rm{V}}\)
4 \(2.45\;{\rm{V}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII03:ELECTROCHEMISTRY

329969 Given that \({\rm{E}}_{\left. {{\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}}} \right \vert {\rm{Zn}}}^{\rm{o}}{\rm{ = - 0}}{\rm{.763}}\,\,{\rm{V}}\) and \({\rm{E}}_{\left. {{\rm{C}}{{\rm{d}}^{{\rm{2 + }}}}} \right \vert {\rm{Cd}}}^{\rm{o}}{\rm{ = - 0}}{\rm{.403}}\,\,{\rm{V}}\), the emf of the following cell: \({\rm{Zn/Z}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{,0}}{\rm{.004M//C}}{{\rm{d}}^{{\rm{2 + }}}}{\rm{,0}}{\rm{.2M/Cd}}\)

1 \({\rm{E = + 0}}{\rm{.36 + }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.2}}}}{{{\rm{0}}{\rm{.004}}}}} \right)} \right]\)
2 \({\rm{E = - 0}}{\rm{.36 + }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.2}}}}{{{\rm{0}}{\rm{.004}}}}} \right)} \right]\)
3 \({\rm{E = + 0}}{\rm{.36 - }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.004}}}}{{{\rm{0}}{\rm{.2}}}}} \right)} \right]\)
4 \({\rm{E = - 0}}{\rm{.36 + }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.004}}}}{{{\rm{0}}{\rm{.2}}}}} \right)} \right]\)
CHXII03:ELECTROCHEMISTRY

329970 For \({\rm{C}}{{\rm{r}}_{\rm{2}}}{\rm{O}}_{\rm{7}}^{{\rm{2 - }}}{\rm{ + 14}}{{\rm{H}}^{\rm{ + }}}{\rm{ + 6}}{{\rm{e}}^{\rm{ - }}} \to {\rm{2C}}{{\rm{r}}^{{\rm{3 + }}}}{\rm{ + 7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\), \({{\rm{E}}^{\rm{o}}}{\rm{ = 1}}{\rm{.33}}\,\,{\rm{V}}\,\,{\rm{at}}\,\,\left[ {{\rm{C}}{{\rm{r}}_{\rm{2}}}{\rm{O}}_{\rm{7}}^{{\rm{2 - }}}} \right]{\rm{ = 4}}{\rm{.5}}\,\,{\rm{mollimole}}\), \(\left[ {{\rm{C}}{{\rm{r}}^{{\rm{3 + }}}}} \right]{\rm{ = 15}}\) millimole, E is 1.067 V. The pH of the solution is nearly equal to

1 2
2 3
3 5
4 4
CHXII03:ELECTROCHEMISTRY

329971 If \({\rm{E^\circ }}\left( {{\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{,Zn}}} \right) = - 0.763{\rm{V}}\) and \({\rm{E^\circ }}\left( {{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}{\rm{,Fe}}} \right) = - 0.44{\rm{V}}\), then the emf of the cell
\({\rm{Zn}}\left \vert {{\rm{Z}}{{\rm{n}}^{2 + }}(a = 0.001)} \right \vert \left \vert {{\rm{F}}{{\rm{e}}^{2 + }}({\rm{a}} = 0.005)} \right \vert {\rm{Fe}}\) is

1 equal to \(0.323 \mathrm{~V}\)
2 less than \(0.323 \mathrm{~V}\)
3 greater than \(0.323 \mathrm{~V}\)
4 equal to \(1.103 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329972 The emf of the following cell at 298 K is \(\left. {{\rm{Fe(s)}}} \right \vert \left. {{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}\left( {{\rm{0}}{\rm{.001M}}} \right)} \right\vert \left. {{{\rm{H}}^{\rm{ + }}}{\rm{(1M)}}} \right \vert \left. {{{\rm{H}}_{\rm{2}}}{\rm{(g)(1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar)}}} \right \vert {\rm{Pt(s)}}\) \({\rm{Given}}\,\,{\rm{E}}_{{\rm{(F}}{{\rm{e}}^{{\rm{2 + }}}}{\rm{/Fe)}}}^{\rm{o}}{\rm{ = - 0}}{\rm{.44V}}\)

1 0.44 V
2 0.53 V
3 0.35 V
4 Data insufficient
CHXII03:ELECTROCHEMISTRY

329973 The EMF of the cell, \({\rm{Mg}}\left \vert {{\rm{M}}{{\rm{g}}^{2 + }}(0.01{\rm{M}})} \right \vert \left \vert {{\rm{S}}{{\rm{n}}^{2 + }}(0.1{\rm{M}})} \right \vert {\rm{Sn}}\) at \(298\;{\rm{K}}\) is \(\left( {{\rm{E}}{^\circ _{{\rm{M}}{{\rm{g}}^{2 + }}/{\rm{Mg}}}} = - 2.34V,{\rm{E}}{^\circ _{{\rm{S}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{/Sn}}}} = - 0.14\;{\rm{V}}} \right)\)

1 \(2.17\;{\rm{V}}\)
2 \(2.23\;{\rm{V }}\)
3 \(2.51\;{\rm{V}}\)
4 \(2.45\;{\rm{V}}\)
CHXII03:ELECTROCHEMISTRY

329969 Given that \({\rm{E}}_{\left. {{\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}}} \right \vert {\rm{Zn}}}^{\rm{o}}{\rm{ = - 0}}{\rm{.763}}\,\,{\rm{V}}\) and \({\rm{E}}_{\left. {{\rm{C}}{{\rm{d}}^{{\rm{2 + }}}}} \right \vert {\rm{Cd}}}^{\rm{o}}{\rm{ = - 0}}{\rm{.403}}\,\,{\rm{V}}\), the emf of the following cell: \({\rm{Zn/Z}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{,0}}{\rm{.004M//C}}{{\rm{d}}^{{\rm{2 + }}}}{\rm{,0}}{\rm{.2M/Cd}}\)

1 \({\rm{E = + 0}}{\rm{.36 + }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.2}}}}{{{\rm{0}}{\rm{.004}}}}} \right)} \right]\)
2 \({\rm{E = - 0}}{\rm{.36 + }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.2}}}}{{{\rm{0}}{\rm{.004}}}}} \right)} \right]\)
3 \({\rm{E = + 0}}{\rm{.36 - }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.004}}}}{{{\rm{0}}{\rm{.2}}}}} \right)} \right]\)
4 \({\rm{E = - 0}}{\rm{.36 + }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.004}}}}{{{\rm{0}}{\rm{.2}}}}} \right)} \right]\)
CHXII03:ELECTROCHEMISTRY

329970 For \({\rm{C}}{{\rm{r}}_{\rm{2}}}{\rm{O}}_{\rm{7}}^{{\rm{2 - }}}{\rm{ + 14}}{{\rm{H}}^{\rm{ + }}}{\rm{ + 6}}{{\rm{e}}^{\rm{ - }}} \to {\rm{2C}}{{\rm{r}}^{{\rm{3 + }}}}{\rm{ + 7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\), \({{\rm{E}}^{\rm{o}}}{\rm{ = 1}}{\rm{.33}}\,\,{\rm{V}}\,\,{\rm{at}}\,\,\left[ {{\rm{C}}{{\rm{r}}_{\rm{2}}}{\rm{O}}_{\rm{7}}^{{\rm{2 - }}}} \right]{\rm{ = 4}}{\rm{.5}}\,\,{\rm{mollimole}}\), \(\left[ {{\rm{C}}{{\rm{r}}^{{\rm{3 + }}}}} \right]{\rm{ = 15}}\) millimole, E is 1.067 V. The pH of the solution is nearly equal to

1 2
2 3
3 5
4 4
CHXII03:ELECTROCHEMISTRY

329971 If \({\rm{E^\circ }}\left( {{\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{,Zn}}} \right) = - 0.763{\rm{V}}\) and \({\rm{E^\circ }}\left( {{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}{\rm{,Fe}}} \right) = - 0.44{\rm{V}}\), then the emf of the cell
\({\rm{Zn}}\left \vert {{\rm{Z}}{{\rm{n}}^{2 + }}(a = 0.001)} \right \vert \left \vert {{\rm{F}}{{\rm{e}}^{2 + }}({\rm{a}} = 0.005)} \right \vert {\rm{Fe}}\) is

1 equal to \(0.323 \mathrm{~V}\)
2 less than \(0.323 \mathrm{~V}\)
3 greater than \(0.323 \mathrm{~V}\)
4 equal to \(1.103 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329972 The emf of the following cell at 298 K is \(\left. {{\rm{Fe(s)}}} \right \vert \left. {{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}\left( {{\rm{0}}{\rm{.001M}}} \right)} \right\vert \left. {{{\rm{H}}^{\rm{ + }}}{\rm{(1M)}}} \right \vert \left. {{{\rm{H}}_{\rm{2}}}{\rm{(g)(1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar)}}} \right \vert {\rm{Pt(s)}}\) \({\rm{Given}}\,\,{\rm{E}}_{{\rm{(F}}{{\rm{e}}^{{\rm{2 + }}}}{\rm{/Fe)}}}^{\rm{o}}{\rm{ = - 0}}{\rm{.44V}}\)

1 0.44 V
2 0.53 V
3 0.35 V
4 Data insufficient
CHXII03:ELECTROCHEMISTRY

329973 The EMF of the cell, \({\rm{Mg}}\left \vert {{\rm{M}}{{\rm{g}}^{2 + }}(0.01{\rm{M}})} \right \vert \left \vert {{\rm{S}}{{\rm{n}}^{2 + }}(0.1{\rm{M}})} \right \vert {\rm{Sn}}\) at \(298\;{\rm{K}}\) is \(\left( {{\rm{E}}{^\circ _{{\rm{M}}{{\rm{g}}^{2 + }}/{\rm{Mg}}}} = - 2.34V,{\rm{E}}{^\circ _{{\rm{S}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{/Sn}}}} = - 0.14\;{\rm{V}}} \right)\)

1 \(2.17\;{\rm{V}}\)
2 \(2.23\;{\rm{V }}\)
3 \(2.51\;{\rm{V}}\)
4 \(2.45\;{\rm{V}}\)
CHXII03:ELECTROCHEMISTRY

329969 Given that \({\rm{E}}_{\left. {{\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}}} \right \vert {\rm{Zn}}}^{\rm{o}}{\rm{ = - 0}}{\rm{.763}}\,\,{\rm{V}}\) and \({\rm{E}}_{\left. {{\rm{C}}{{\rm{d}}^{{\rm{2 + }}}}} \right \vert {\rm{Cd}}}^{\rm{o}}{\rm{ = - 0}}{\rm{.403}}\,\,{\rm{V}}\), the emf of the following cell: \({\rm{Zn/Z}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{,0}}{\rm{.004M//C}}{{\rm{d}}^{{\rm{2 + }}}}{\rm{,0}}{\rm{.2M/Cd}}\)

1 \({\rm{E = + 0}}{\rm{.36 + }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.2}}}}{{{\rm{0}}{\rm{.004}}}}} \right)} \right]\)
2 \({\rm{E = - 0}}{\rm{.36 + }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.2}}}}{{{\rm{0}}{\rm{.004}}}}} \right)} \right]\)
3 \({\rm{E = + 0}}{\rm{.36 - }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.004}}}}{{{\rm{0}}{\rm{.2}}}}} \right)} \right]\)
4 \({\rm{E = - 0}}{\rm{.36 + }}\left[ {\frac{{{\rm{0}}{\rm{.059}}}}{{\rm{2}}}} \right]\left[ {{\rm{log}}\left( {\frac{{{\rm{0}}{\rm{.004}}}}{{{\rm{0}}{\rm{.2}}}}} \right)} \right]\)
CHXII03:ELECTROCHEMISTRY

329970 For \({\rm{C}}{{\rm{r}}_{\rm{2}}}{\rm{O}}_{\rm{7}}^{{\rm{2 - }}}{\rm{ + 14}}{{\rm{H}}^{\rm{ + }}}{\rm{ + 6}}{{\rm{e}}^{\rm{ - }}} \to {\rm{2C}}{{\rm{r}}^{{\rm{3 + }}}}{\rm{ + 7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\), \({{\rm{E}}^{\rm{o}}}{\rm{ = 1}}{\rm{.33}}\,\,{\rm{V}}\,\,{\rm{at}}\,\,\left[ {{\rm{C}}{{\rm{r}}_{\rm{2}}}{\rm{O}}_{\rm{7}}^{{\rm{2 - }}}} \right]{\rm{ = 4}}{\rm{.5}}\,\,{\rm{mollimole}}\), \(\left[ {{\rm{C}}{{\rm{r}}^{{\rm{3 + }}}}} \right]{\rm{ = 15}}\) millimole, E is 1.067 V. The pH of the solution is nearly equal to

1 2
2 3
3 5
4 4
CHXII03:ELECTROCHEMISTRY

329971 If \({\rm{E^\circ }}\left( {{\rm{Z}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{,Zn}}} \right) = - 0.763{\rm{V}}\) and \({\rm{E^\circ }}\left( {{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}{\rm{,Fe}}} \right) = - 0.44{\rm{V}}\), then the emf of the cell
\({\rm{Zn}}\left \vert {{\rm{Z}}{{\rm{n}}^{2 + }}(a = 0.001)} \right \vert \left \vert {{\rm{F}}{{\rm{e}}^{2 + }}({\rm{a}} = 0.005)} \right \vert {\rm{Fe}}\) is

1 equal to \(0.323 \mathrm{~V}\)
2 less than \(0.323 \mathrm{~V}\)
3 greater than \(0.323 \mathrm{~V}\)
4 equal to \(1.103 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

329972 The emf of the following cell at 298 K is \(\left. {{\rm{Fe(s)}}} \right \vert \left. {{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}\left( {{\rm{0}}{\rm{.001M}}} \right)} \right\vert \left. {{{\rm{H}}^{\rm{ + }}}{\rm{(1M)}}} \right \vert \left. {{{\rm{H}}_{\rm{2}}}{\rm{(g)(1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar)}}} \right \vert {\rm{Pt(s)}}\) \({\rm{Given}}\,\,{\rm{E}}_{{\rm{(F}}{{\rm{e}}^{{\rm{2 + }}}}{\rm{/Fe)}}}^{\rm{o}}{\rm{ = - 0}}{\rm{.44V}}\)

1 0.44 V
2 0.53 V
3 0.35 V
4 Data insufficient
CHXII03:ELECTROCHEMISTRY

329973 The EMF of the cell, \({\rm{Mg}}\left \vert {{\rm{M}}{{\rm{g}}^{2 + }}(0.01{\rm{M}})} \right \vert \left \vert {{\rm{S}}{{\rm{n}}^{2 + }}(0.1{\rm{M}})} \right \vert {\rm{Sn}}\) at \(298\;{\rm{K}}\) is \(\left( {{\rm{E}}{^\circ _{{\rm{M}}{{\rm{g}}^{2 + }}/{\rm{Mg}}}} = - 2.34V,{\rm{E}}{^\circ _{{\rm{S}}{{\rm{n}}^{{\rm{2 + }}}}{\rm{/Sn}}}} = - 0.14\;{\rm{V}}} \right)\)

1 \(2.17\;{\rm{V}}\)
2 \(2.23\;{\rm{V }}\)
3 \(2.51\;{\rm{V}}\)
4 \(2.45\;{\rm{V}}\)