329982 The relationship between standard reduction potential of cell (in volts) and equilibrium constant at \({\mathrm{25{ }^{\circ} \mathrm{C}}}\) is shown by \({\mathrm{\mathrm{E}_{\mathrm{cell}}^{\circ}=\dfrac{5.91 \times 10^{-\mathrm{x}}}{\mathrm{n}} \log _{10} \mathrm{~K}}}\). The value of ' X ' is ____ .
329982 The relationship between standard reduction potential of cell (in volts) and equilibrium constant at \({\mathrm{25{ }^{\circ} \mathrm{C}}}\) is shown by \({\mathrm{\mathrm{E}_{\mathrm{cell}}^{\circ}=\dfrac{5.91 \times 10^{-\mathrm{x}}}{\mathrm{n}} \log _{10} \mathrm{~K}}}\). The value of ' X ' is ____ .
329982 The relationship between standard reduction potential of cell (in volts) and equilibrium constant at \({\mathrm{25{ }^{\circ} \mathrm{C}}}\) is shown by \({\mathrm{\mathrm{E}_{\mathrm{cell}}^{\circ}=\dfrac{5.91 \times 10^{-\mathrm{x}}}{\mathrm{n}} \log _{10} \mathrm{~K}}}\). The value of ' X ' is ____ .
329982 The relationship between standard reduction potential of cell (in volts) and equilibrium constant at \({\mathrm{25{ }^{\circ} \mathrm{C}}}\) is shown by \({\mathrm{\mathrm{E}_{\mathrm{cell}}^{\circ}=\dfrac{5.91 \times 10^{-\mathrm{x}}}{\mathrm{n}} \log _{10} \mathrm{~K}}}\). The value of ' X ' is ____ .