Packing Efficiency
CHXII01:THE SOLID STATE

318898 A metal crystallises with a face-centred cubic lattice. The edge of the unit cell is \(408 \mathrm{pm}\). The diameter of the metal atom is

1 \(144 \mathrm{pm}\)
2 \(204 \mathrm{pm}\)
3 \(288 \mathrm{pm}\)
4 \(408 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318899 If "a" stands for the edge length of the cubic systems: simple cubic, body-centred cubic, and face-centred cubic, then the ratio of radii of the spheres in these system will be respectively

1 \(\dfrac{1}{2} a: \sqrt{3} a: \dfrac{1}{\sqrt{2}} a\)
2 \(\dfrac{1}{2} a: \dfrac{\sqrt{3}}{4} a: \dfrac{1}{2 \sqrt{2}} a\)
3 \(1 a: \sqrt{3} a: \sqrt{2} a\)
4 \(\dfrac{1}{2} a: \dfrac{\sqrt{3}}{2} a: \dfrac{\sqrt{2}}{2} a\)
CHXII01:THE SOLID STATE

318900 Silver crystallises in fcc structure, if edge length of unit cell is \(316.5 \mathrm{pm}\). What is the radius of silver atom?

1 \(121.91 \mathrm{pm}\)
2 \(111.91 \mathrm{pm}\)
3 \(137.04 \mathrm{pm}\)
4 \(158.25 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318901 Lithium forms body centred cube structure. The length of the side of its unit cell is \(351 \mathrm{pm}\). Atomic radius of the lithium will be :

1 \(152 \mathrm{pm}\)
2 \(300 \mathrm{pm}\)
3 \(240 \mathrm{pm}\)
4 \(75 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318898 A metal crystallises with a face-centred cubic lattice. The edge of the unit cell is \(408 \mathrm{pm}\). The diameter of the metal atom is

1 \(144 \mathrm{pm}\)
2 \(204 \mathrm{pm}\)
3 \(288 \mathrm{pm}\)
4 \(408 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318899 If "a" stands for the edge length of the cubic systems: simple cubic, body-centred cubic, and face-centred cubic, then the ratio of radii of the spheres in these system will be respectively

1 \(\dfrac{1}{2} a: \sqrt{3} a: \dfrac{1}{\sqrt{2}} a\)
2 \(\dfrac{1}{2} a: \dfrac{\sqrt{3}}{4} a: \dfrac{1}{2 \sqrt{2}} a\)
3 \(1 a: \sqrt{3} a: \sqrt{2} a\)
4 \(\dfrac{1}{2} a: \dfrac{\sqrt{3}}{2} a: \dfrac{\sqrt{2}}{2} a\)
CHXII01:THE SOLID STATE

318900 Silver crystallises in fcc structure, if edge length of unit cell is \(316.5 \mathrm{pm}\). What is the radius of silver atom?

1 \(121.91 \mathrm{pm}\)
2 \(111.91 \mathrm{pm}\)
3 \(137.04 \mathrm{pm}\)
4 \(158.25 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318901 Lithium forms body centred cube structure. The length of the side of its unit cell is \(351 \mathrm{pm}\). Atomic radius of the lithium will be :

1 \(152 \mathrm{pm}\)
2 \(300 \mathrm{pm}\)
3 \(240 \mathrm{pm}\)
4 \(75 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318898 A metal crystallises with a face-centred cubic lattice. The edge of the unit cell is \(408 \mathrm{pm}\). The diameter of the metal atom is

1 \(144 \mathrm{pm}\)
2 \(204 \mathrm{pm}\)
3 \(288 \mathrm{pm}\)
4 \(408 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318899 If "a" stands for the edge length of the cubic systems: simple cubic, body-centred cubic, and face-centred cubic, then the ratio of radii of the spheres in these system will be respectively

1 \(\dfrac{1}{2} a: \sqrt{3} a: \dfrac{1}{\sqrt{2}} a\)
2 \(\dfrac{1}{2} a: \dfrac{\sqrt{3}}{4} a: \dfrac{1}{2 \sqrt{2}} a\)
3 \(1 a: \sqrt{3} a: \sqrt{2} a\)
4 \(\dfrac{1}{2} a: \dfrac{\sqrt{3}}{2} a: \dfrac{\sqrt{2}}{2} a\)
CHXII01:THE SOLID STATE

318900 Silver crystallises in fcc structure, if edge length of unit cell is \(316.5 \mathrm{pm}\). What is the radius of silver atom?

1 \(121.91 \mathrm{pm}\)
2 \(111.91 \mathrm{pm}\)
3 \(137.04 \mathrm{pm}\)
4 \(158.25 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318901 Lithium forms body centred cube structure. The length of the side of its unit cell is \(351 \mathrm{pm}\). Atomic radius of the lithium will be :

1 \(152 \mathrm{pm}\)
2 \(300 \mathrm{pm}\)
3 \(240 \mathrm{pm}\)
4 \(75 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318898 A metal crystallises with a face-centred cubic lattice. The edge of the unit cell is \(408 \mathrm{pm}\). The diameter of the metal atom is

1 \(144 \mathrm{pm}\)
2 \(204 \mathrm{pm}\)
3 \(288 \mathrm{pm}\)
4 \(408 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318899 If "a" stands for the edge length of the cubic systems: simple cubic, body-centred cubic, and face-centred cubic, then the ratio of radii of the spheres in these system will be respectively

1 \(\dfrac{1}{2} a: \sqrt{3} a: \dfrac{1}{\sqrt{2}} a\)
2 \(\dfrac{1}{2} a: \dfrac{\sqrt{3}}{4} a: \dfrac{1}{2 \sqrt{2}} a\)
3 \(1 a: \sqrt{3} a: \sqrt{2} a\)
4 \(\dfrac{1}{2} a: \dfrac{\sqrt{3}}{2} a: \dfrac{\sqrt{2}}{2} a\)
CHXII01:THE SOLID STATE

318900 Silver crystallises in fcc structure, if edge length of unit cell is \(316.5 \mathrm{pm}\). What is the radius of silver atom?

1 \(121.91 \mathrm{pm}\)
2 \(111.91 \mathrm{pm}\)
3 \(137.04 \mathrm{pm}\)
4 \(158.25 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318901 Lithium forms body centred cube structure. The length of the side of its unit cell is \(351 \mathrm{pm}\). Atomic radius of the lithium will be :

1 \(152 \mathrm{pm}\)
2 \(300 \mathrm{pm}\)
3 \(240 \mathrm{pm}\)
4 \(75 \mathrm{pm}\)