Packing Efficiency
CHXII01:THE SOLID STATE

318893 The closest distance between two atoms (in terms of edge length) would be the highest for which of unit cell, assuming the edge length of each unit cell of be ' \(a\) ' ?

1 FCC unit cell
2 BCC unit cell
3 Diamond unit cell
4 Primitive unit cell
CHXII01:THE SOLID STATE

318894 Sodium metal crystallises in B.C.C. lattice with cell edge, \({\rm{4}}{\rm{.29}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \). The length of the body diagonal of the unit cell is

1 \({\rm{1}}{\rm{.86}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
2 \({\rm{4}}{\rm{.29}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
3 \({\rm{7}}{\rm{.44}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
4 \({\rm{3}}{\rm{.72}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
CHXII01:THE SOLID STATE

318895 Xenon crystallises in fcc lattice and the edge length of unit cell is \(620 \mathrm{pm}\). What is the radius of Xe atom?

1 \(438.5 \mathrm{pm}\)
2 \(219.2 \mathrm{pm}\)
3 \(265.5 \mathrm{pm}\)
4 \(536.9 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318896 Edge length of a cube is \(300 \mathrm{pm}\). Its body diagonal would be

1 \(600 \mathrm{pm}\)
2 \(423 \mathrm{pm}\)
3 \(519.6 \mathrm{pm}\)
4 \(450.5 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318897 If a metal crystallises in bcc structure with edge length of unit cell \(4.29 \times 10^{-8} \mathrm{~cm}\) the radius of metal atom is

1 \(3.2 \times 10^{-7} \mathrm{~cm}\)
2 \(1.86 \times 10^{-8} \mathrm{~cm}\)
3 \(1.07 \times 10^{-7} \mathrm{~cm}\)
4 \(1.07 \times 10^{-8} \mathrm{~cm}\)
CHXII01:THE SOLID STATE

318893 The closest distance between two atoms (in terms of edge length) would be the highest for which of unit cell, assuming the edge length of each unit cell of be ' \(a\) ' ?

1 FCC unit cell
2 BCC unit cell
3 Diamond unit cell
4 Primitive unit cell
CHXII01:THE SOLID STATE

318894 Sodium metal crystallises in B.C.C. lattice with cell edge, \({\rm{4}}{\rm{.29}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \). The length of the body diagonal of the unit cell is

1 \({\rm{1}}{\rm{.86}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
2 \({\rm{4}}{\rm{.29}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
3 \({\rm{7}}{\rm{.44}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
4 \({\rm{3}}{\rm{.72}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
CHXII01:THE SOLID STATE

318895 Xenon crystallises in fcc lattice and the edge length of unit cell is \(620 \mathrm{pm}\). What is the radius of Xe atom?

1 \(438.5 \mathrm{pm}\)
2 \(219.2 \mathrm{pm}\)
3 \(265.5 \mathrm{pm}\)
4 \(536.9 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318896 Edge length of a cube is \(300 \mathrm{pm}\). Its body diagonal would be

1 \(600 \mathrm{pm}\)
2 \(423 \mathrm{pm}\)
3 \(519.6 \mathrm{pm}\)
4 \(450.5 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318897 If a metal crystallises in bcc structure with edge length of unit cell \(4.29 \times 10^{-8} \mathrm{~cm}\) the radius of metal atom is

1 \(3.2 \times 10^{-7} \mathrm{~cm}\)
2 \(1.86 \times 10^{-8} \mathrm{~cm}\)
3 \(1.07 \times 10^{-7} \mathrm{~cm}\)
4 \(1.07 \times 10^{-8} \mathrm{~cm}\)
CHXII01:THE SOLID STATE

318893 The closest distance between two atoms (in terms of edge length) would be the highest for which of unit cell, assuming the edge length of each unit cell of be ' \(a\) ' ?

1 FCC unit cell
2 BCC unit cell
3 Diamond unit cell
4 Primitive unit cell
CHXII01:THE SOLID STATE

318894 Sodium metal crystallises in B.C.C. lattice with cell edge, \({\rm{4}}{\rm{.29}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \). The length of the body diagonal of the unit cell is

1 \({\rm{1}}{\rm{.86}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
2 \({\rm{4}}{\rm{.29}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
3 \({\rm{7}}{\rm{.44}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
4 \({\rm{3}}{\rm{.72}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
CHXII01:THE SOLID STATE

318895 Xenon crystallises in fcc lattice and the edge length of unit cell is \(620 \mathrm{pm}\). What is the radius of Xe atom?

1 \(438.5 \mathrm{pm}\)
2 \(219.2 \mathrm{pm}\)
3 \(265.5 \mathrm{pm}\)
4 \(536.9 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318896 Edge length of a cube is \(300 \mathrm{pm}\). Its body diagonal would be

1 \(600 \mathrm{pm}\)
2 \(423 \mathrm{pm}\)
3 \(519.6 \mathrm{pm}\)
4 \(450.5 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318897 If a metal crystallises in bcc structure with edge length of unit cell \(4.29 \times 10^{-8} \mathrm{~cm}\) the radius of metal atom is

1 \(3.2 \times 10^{-7} \mathrm{~cm}\)
2 \(1.86 \times 10^{-8} \mathrm{~cm}\)
3 \(1.07 \times 10^{-7} \mathrm{~cm}\)
4 \(1.07 \times 10^{-8} \mathrm{~cm}\)
CHXII01:THE SOLID STATE

318893 The closest distance between two atoms (in terms of edge length) would be the highest for which of unit cell, assuming the edge length of each unit cell of be ' \(a\) ' ?

1 FCC unit cell
2 BCC unit cell
3 Diamond unit cell
4 Primitive unit cell
CHXII01:THE SOLID STATE

318894 Sodium metal crystallises in B.C.C. lattice with cell edge, \({\rm{4}}{\rm{.29}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \). The length of the body diagonal of the unit cell is

1 \({\rm{1}}{\rm{.86}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
2 \({\rm{4}}{\rm{.29}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
3 \({\rm{7}}{\rm{.44}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
4 \({\rm{3}}{\rm{.72}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
CHXII01:THE SOLID STATE

318895 Xenon crystallises in fcc lattice and the edge length of unit cell is \(620 \mathrm{pm}\). What is the radius of Xe atom?

1 \(438.5 \mathrm{pm}\)
2 \(219.2 \mathrm{pm}\)
3 \(265.5 \mathrm{pm}\)
4 \(536.9 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318896 Edge length of a cube is \(300 \mathrm{pm}\). Its body diagonal would be

1 \(600 \mathrm{pm}\)
2 \(423 \mathrm{pm}\)
3 \(519.6 \mathrm{pm}\)
4 \(450.5 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318897 If a metal crystallises in bcc structure with edge length of unit cell \(4.29 \times 10^{-8} \mathrm{~cm}\) the radius of metal atom is

1 \(3.2 \times 10^{-7} \mathrm{~cm}\)
2 \(1.86 \times 10^{-8} \mathrm{~cm}\)
3 \(1.07 \times 10^{-7} \mathrm{~cm}\)
4 \(1.07 \times 10^{-8} \mathrm{~cm}\)
CHXII01:THE SOLID STATE

318893 The closest distance between two atoms (in terms of edge length) would be the highest for which of unit cell, assuming the edge length of each unit cell of be ' \(a\) ' ?

1 FCC unit cell
2 BCC unit cell
3 Diamond unit cell
4 Primitive unit cell
CHXII01:THE SOLID STATE

318894 Sodium metal crystallises in B.C.C. lattice with cell edge, \({\rm{4}}{\rm{.29}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \). The length of the body diagonal of the unit cell is

1 \({\rm{1}}{\rm{.86}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
2 \({\rm{4}}{\rm{.29}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
3 \({\rm{7}}{\rm{.44}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
4 \({\rm{3}}{\rm{.72}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
CHXII01:THE SOLID STATE

318895 Xenon crystallises in fcc lattice and the edge length of unit cell is \(620 \mathrm{pm}\). What is the radius of Xe atom?

1 \(438.5 \mathrm{pm}\)
2 \(219.2 \mathrm{pm}\)
3 \(265.5 \mathrm{pm}\)
4 \(536.9 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318896 Edge length of a cube is \(300 \mathrm{pm}\). Its body diagonal would be

1 \(600 \mathrm{pm}\)
2 \(423 \mathrm{pm}\)
3 \(519.6 \mathrm{pm}\)
4 \(450.5 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318897 If a metal crystallises in bcc structure with edge length of unit cell \(4.29 \times 10^{-8} \mathrm{~cm}\) the radius of metal atom is

1 \(3.2 \times 10^{-7} \mathrm{~cm}\)
2 \(1.86 \times 10^{-8} \mathrm{~cm}\)
3 \(1.07 \times 10^{-7} \mathrm{~cm}\)
4 \(1.07 \times 10^{-8} \mathrm{~cm}\)