NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
CHXII01:THE SOLID STATE
318902
Sodium metal crystallizes in bcc lattice with edge length of \({\rm{4}}{\rm{.29}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \). The radius of sodium atom is
318904
Lithium metal crystallises in a body-centred cubic crystal. If the length of the side of the unit cell is \(351 \mathrm{pm}\), the atomic radius of the lithium will be
1 \(300.5 \mathrm{pm}\)
2 \(240.8 \mathrm{pm}\)
3 \(151.8 \mathrm{pm}\)
4 \(75.5 \mathrm{pm}\)
Explanation:
For \(b c c\) \[ r=\dfrac{\sqrt{3} a}{4}=\dfrac{\sqrt{3}}{4} \times 351=151.8 \mathrm{pm} \]
CHXII01:THE SOLID STATE
318905
If ' \(a\) ' is the length of the side of a cubic unit cell the distance between the body-centered atom and one corner atom in the cube will be
1 \(\dfrac{2}{\sqrt{3}} a\)
2 \(\dfrac{\sqrt{3}}{2} a\)
3 \(\dfrac{4}{\sqrt{3}} a\)
4 \(\dfrac{\sqrt{3}}{4} a\)
Explanation:
Length of body diagonal \(=a \sqrt{3}\) Distance between body centred atom and corner atom \(=\dfrac{\sqrt{3} a}{2}\)
318902
Sodium metal crystallizes in bcc lattice with edge length of \({\rm{4}}{\rm{.29}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \). The radius of sodium atom is
318904
Lithium metal crystallises in a body-centred cubic crystal. If the length of the side of the unit cell is \(351 \mathrm{pm}\), the atomic radius of the lithium will be
1 \(300.5 \mathrm{pm}\)
2 \(240.8 \mathrm{pm}\)
3 \(151.8 \mathrm{pm}\)
4 \(75.5 \mathrm{pm}\)
Explanation:
For \(b c c\) \[ r=\dfrac{\sqrt{3} a}{4}=\dfrac{\sqrt{3}}{4} \times 351=151.8 \mathrm{pm} \]
CHXII01:THE SOLID STATE
318905
If ' \(a\) ' is the length of the side of a cubic unit cell the distance between the body-centered atom and one corner atom in the cube will be
1 \(\dfrac{2}{\sqrt{3}} a\)
2 \(\dfrac{\sqrt{3}}{2} a\)
3 \(\dfrac{4}{\sqrt{3}} a\)
4 \(\dfrac{\sqrt{3}}{4} a\)
Explanation:
Length of body diagonal \(=a \sqrt{3}\) Distance between body centred atom and corner atom \(=\dfrac{\sqrt{3} a}{2}\)
318902
Sodium metal crystallizes in bcc lattice with edge length of \({\rm{4}}{\rm{.29}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \). The radius of sodium atom is
318904
Lithium metal crystallises in a body-centred cubic crystal. If the length of the side of the unit cell is \(351 \mathrm{pm}\), the atomic radius of the lithium will be
1 \(300.5 \mathrm{pm}\)
2 \(240.8 \mathrm{pm}\)
3 \(151.8 \mathrm{pm}\)
4 \(75.5 \mathrm{pm}\)
Explanation:
For \(b c c\) \[ r=\dfrac{\sqrt{3} a}{4}=\dfrac{\sqrt{3}}{4} \times 351=151.8 \mathrm{pm} \]
CHXII01:THE SOLID STATE
318905
If ' \(a\) ' is the length of the side of a cubic unit cell the distance between the body-centered atom and one corner atom in the cube will be
1 \(\dfrac{2}{\sqrt{3}} a\)
2 \(\dfrac{\sqrt{3}}{2} a\)
3 \(\dfrac{4}{\sqrt{3}} a\)
4 \(\dfrac{\sqrt{3}}{4} a\)
Explanation:
Length of body diagonal \(=a \sqrt{3}\) Distance between body centred atom and corner atom \(=\dfrac{\sqrt{3} a}{2}\)
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
CHXII01:THE SOLID STATE
318902
Sodium metal crystallizes in bcc lattice with edge length of \({\rm{4}}{\rm{.29}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \). The radius of sodium atom is
318904
Lithium metal crystallises in a body-centred cubic crystal. If the length of the side of the unit cell is \(351 \mathrm{pm}\), the atomic radius of the lithium will be
1 \(300.5 \mathrm{pm}\)
2 \(240.8 \mathrm{pm}\)
3 \(151.8 \mathrm{pm}\)
4 \(75.5 \mathrm{pm}\)
Explanation:
For \(b c c\) \[ r=\dfrac{\sqrt{3} a}{4}=\dfrac{\sqrt{3}}{4} \times 351=151.8 \mathrm{pm} \]
CHXII01:THE SOLID STATE
318905
If ' \(a\) ' is the length of the side of a cubic unit cell the distance between the body-centered atom and one corner atom in the cube will be
1 \(\dfrac{2}{\sqrt{3}} a\)
2 \(\dfrac{\sqrt{3}}{2} a\)
3 \(\dfrac{4}{\sqrt{3}} a\)
4 \(\dfrac{\sqrt{3}}{4} a\)
Explanation:
Length of body diagonal \(=a \sqrt{3}\) Distance between body centred atom and corner atom \(=\dfrac{\sqrt{3} a}{2}\)