Packing Efficiency
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII01:THE SOLID STATE

318902 Sodium metal crystallizes in bcc lattice with edge length of \({\rm{4}}{\rm{.29}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \). The radius of sodium atom is

1 \({\rm{1}}{\rm{.601}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
2 \({\rm{1}}{\rm{.857}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
3 \({\rm{2}}{\rm{.857}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
4 \({\rm{2}}{\rm{.145}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
CHXII01:THE SOLID STATE

318903 Copper crystallises in fcc with a unit length of \(361 \mathrm{pm}\). What is the radius of copper atom?

1 \(157 \mathrm{pm}\)
2 \(128 \mathrm{pm}\)
3 \(108 \mathrm{pm}\)
4 \(181 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318904 Lithium metal crystallises in a body-centred cubic crystal. If the length of the side of the unit cell is \(351 \mathrm{pm}\), the atomic radius of the lithium will be

1 \(300.5 \mathrm{pm}\)
2 \(240.8 \mathrm{pm}\)
3 \(151.8 \mathrm{pm}\)
4 \(75.5 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318905 If ' \(a\) ' is the length of the side of a cubic unit cell the distance between the body-centered atom and one corner atom in the cube will be

1 \(\dfrac{2}{\sqrt{3}} a\)
2 \(\dfrac{\sqrt{3}}{2} a\)
3 \(\dfrac{4}{\sqrt{3}} a\)
4 \(\dfrac{\sqrt{3}}{4} a\)
CHXII01:THE SOLID STATE

318902 Sodium metal crystallizes in bcc lattice with edge length of \({\rm{4}}{\rm{.29}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \). The radius of sodium atom is

1 \({\rm{1}}{\rm{.601}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
2 \({\rm{1}}{\rm{.857}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
3 \({\rm{2}}{\rm{.857}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
4 \({\rm{2}}{\rm{.145}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
CHXII01:THE SOLID STATE

318903 Copper crystallises in fcc with a unit length of \(361 \mathrm{pm}\). What is the radius of copper atom?

1 \(157 \mathrm{pm}\)
2 \(128 \mathrm{pm}\)
3 \(108 \mathrm{pm}\)
4 \(181 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318904 Lithium metal crystallises in a body-centred cubic crystal. If the length of the side of the unit cell is \(351 \mathrm{pm}\), the atomic radius of the lithium will be

1 \(300.5 \mathrm{pm}\)
2 \(240.8 \mathrm{pm}\)
3 \(151.8 \mathrm{pm}\)
4 \(75.5 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318905 If ' \(a\) ' is the length of the side of a cubic unit cell the distance between the body-centered atom and one corner atom in the cube will be

1 \(\dfrac{2}{\sqrt{3}} a\)
2 \(\dfrac{\sqrt{3}}{2} a\)
3 \(\dfrac{4}{\sqrt{3}} a\)
4 \(\dfrac{\sqrt{3}}{4} a\)
CHXII01:THE SOLID STATE

318902 Sodium metal crystallizes in bcc lattice with edge length of \({\rm{4}}{\rm{.29}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \). The radius of sodium atom is

1 \({\rm{1}}{\rm{.601}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
2 \({\rm{1}}{\rm{.857}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
3 \({\rm{2}}{\rm{.857}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
4 \({\rm{2}}{\rm{.145}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
CHXII01:THE SOLID STATE

318903 Copper crystallises in fcc with a unit length of \(361 \mathrm{pm}\). What is the radius of copper atom?

1 \(157 \mathrm{pm}\)
2 \(128 \mathrm{pm}\)
3 \(108 \mathrm{pm}\)
4 \(181 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318904 Lithium metal crystallises in a body-centred cubic crystal. If the length of the side of the unit cell is \(351 \mathrm{pm}\), the atomic radius of the lithium will be

1 \(300.5 \mathrm{pm}\)
2 \(240.8 \mathrm{pm}\)
3 \(151.8 \mathrm{pm}\)
4 \(75.5 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318905 If ' \(a\) ' is the length of the side of a cubic unit cell the distance between the body-centered atom and one corner atom in the cube will be

1 \(\dfrac{2}{\sqrt{3}} a\)
2 \(\dfrac{\sqrt{3}}{2} a\)
3 \(\dfrac{4}{\sqrt{3}} a\)
4 \(\dfrac{\sqrt{3}}{4} a\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII01:THE SOLID STATE

318902 Sodium metal crystallizes in bcc lattice with edge length of \({\rm{4}}{\rm{.29}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \). The radius of sodium atom is

1 \({\rm{1}}{\rm{.601}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
2 \({\rm{1}}{\rm{.857}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
3 \({\rm{2}}{\rm{.857}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
4 \({\rm{2}}{\rm{.145}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
CHXII01:THE SOLID STATE

318903 Copper crystallises in fcc with a unit length of \(361 \mathrm{pm}\). What is the radius of copper atom?

1 \(157 \mathrm{pm}\)
2 \(128 \mathrm{pm}\)
3 \(108 \mathrm{pm}\)
4 \(181 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318904 Lithium metal crystallises in a body-centred cubic crystal. If the length of the side of the unit cell is \(351 \mathrm{pm}\), the atomic radius of the lithium will be

1 \(300.5 \mathrm{pm}\)
2 \(240.8 \mathrm{pm}\)
3 \(151.8 \mathrm{pm}\)
4 \(75.5 \mathrm{pm}\)
CHXII01:THE SOLID STATE

318905 If ' \(a\) ' is the length of the side of a cubic unit cell the distance between the body-centered atom and one corner atom in the cube will be

1 \(\dfrac{2}{\sqrt{3}} a\)
2 \(\dfrac{\sqrt{3}}{2} a\)
3 \(\dfrac{4}{\sqrt{3}} a\)
4 \(\dfrac{\sqrt{3}}{4} a\)