Calculations Involving Unit Cell Dimensions
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII01:THE SOLID STATE

318658 Each edge of a cubic unit cell is \(400 \mathrm{pm}\) long. If atomic mass of the element is 120 and its density is \(6.25 \mathrm{~g} / \mathrm{cm}^{3}\), the crystal lattice is : (use \(N_{A}=6 \times 10^{23} \mathrm{~mol}^{-1}\) )

1 Primitive
2 Body centered
3 Face centered
4 End centered
CHXII01:THE SOLID STATE

318659 A compound has fcc structure. If density of unit cell is \(3.4 \mathrm{~g} \mathrm{~cm}^{-3}\), what is the edge length of unit cell?
\((\) Molar mass \(=98.99)\)

1 \({\rm{8}}{\rm{.780}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
2 \({\rm{6}}{\rm{.083}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
3 \({\rm{5}}{\rm{.783}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
4 \({\rm{7}}{\rm{.783}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
CHXII01:THE SOLID STATE

318660 When heated above \(916^{\circ} \mathrm{C}\), iron changes its \(\mathrm{BCC}\) crystalline form to FCC without the change in the radius of atom. The ratio of density of the crystal before heating and after heating is [atomic weight of \(\mathrm{Fe}=56\) ]

1 1.231
2 0.725
3 1.069
4 0.918
CHXII01:THE SOLID STATE

318661 \({\text{Ag}}\) crystallises as fcc. If radius of \(\mathrm{Ag}\) is \({\text{144 pm}}\) then its density will be

1 \(10 \mathrm{~g} \mathrm{~cm}^{-3}\)
2 \(5 \mathrm{~g} \mathrm{~cm}^{-3}\)
3 \(15 \mathrm{~g} \mathrm{~cm}^{-3}\)
4 \(6.5 \mathrm{~g} \mathrm{~cm}^{-3}\)
CHXII01:THE SOLID STATE

318658 Each edge of a cubic unit cell is \(400 \mathrm{pm}\) long. If atomic mass of the element is 120 and its density is \(6.25 \mathrm{~g} / \mathrm{cm}^{3}\), the crystal lattice is : (use \(N_{A}=6 \times 10^{23} \mathrm{~mol}^{-1}\) )

1 Primitive
2 Body centered
3 Face centered
4 End centered
CHXII01:THE SOLID STATE

318659 A compound has fcc structure. If density of unit cell is \(3.4 \mathrm{~g} \mathrm{~cm}^{-3}\), what is the edge length of unit cell?
\((\) Molar mass \(=98.99)\)

1 \({\rm{8}}{\rm{.780}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
2 \({\rm{6}}{\rm{.083}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
3 \({\rm{5}}{\rm{.783}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
4 \({\rm{7}}{\rm{.783}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
CHXII01:THE SOLID STATE

318660 When heated above \(916^{\circ} \mathrm{C}\), iron changes its \(\mathrm{BCC}\) crystalline form to FCC without the change in the radius of atom. The ratio of density of the crystal before heating and after heating is [atomic weight of \(\mathrm{Fe}=56\) ]

1 1.231
2 0.725
3 1.069
4 0.918
CHXII01:THE SOLID STATE

318661 \({\text{Ag}}\) crystallises as fcc. If radius of \(\mathrm{Ag}\) is \({\text{144 pm}}\) then its density will be

1 \(10 \mathrm{~g} \mathrm{~cm}^{-3}\)
2 \(5 \mathrm{~g} \mathrm{~cm}^{-3}\)
3 \(15 \mathrm{~g} \mathrm{~cm}^{-3}\)
4 \(6.5 \mathrm{~g} \mathrm{~cm}^{-3}\)
CHXII01:THE SOLID STATE

318658 Each edge of a cubic unit cell is \(400 \mathrm{pm}\) long. If atomic mass of the element is 120 and its density is \(6.25 \mathrm{~g} / \mathrm{cm}^{3}\), the crystal lattice is : (use \(N_{A}=6 \times 10^{23} \mathrm{~mol}^{-1}\) )

1 Primitive
2 Body centered
3 Face centered
4 End centered
CHXII01:THE SOLID STATE

318659 A compound has fcc structure. If density of unit cell is \(3.4 \mathrm{~g} \mathrm{~cm}^{-3}\), what is the edge length of unit cell?
\((\) Molar mass \(=98.99)\)

1 \({\rm{8}}{\rm{.780}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
2 \({\rm{6}}{\rm{.083}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
3 \({\rm{5}}{\rm{.783}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
4 \({\rm{7}}{\rm{.783}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
CHXII01:THE SOLID STATE

318660 When heated above \(916^{\circ} \mathrm{C}\), iron changes its \(\mathrm{BCC}\) crystalline form to FCC without the change in the radius of atom. The ratio of density of the crystal before heating and after heating is [atomic weight of \(\mathrm{Fe}=56\) ]

1 1.231
2 0.725
3 1.069
4 0.918
CHXII01:THE SOLID STATE

318661 \({\text{Ag}}\) crystallises as fcc. If radius of \(\mathrm{Ag}\) is \({\text{144 pm}}\) then its density will be

1 \(10 \mathrm{~g} \mathrm{~cm}^{-3}\)
2 \(5 \mathrm{~g} \mathrm{~cm}^{-3}\)
3 \(15 \mathrm{~g} \mathrm{~cm}^{-3}\)
4 \(6.5 \mathrm{~g} \mathrm{~cm}^{-3}\)
CHXII01:THE SOLID STATE

318658 Each edge of a cubic unit cell is \(400 \mathrm{pm}\) long. If atomic mass of the element is 120 and its density is \(6.25 \mathrm{~g} / \mathrm{cm}^{3}\), the crystal lattice is : (use \(N_{A}=6 \times 10^{23} \mathrm{~mol}^{-1}\) )

1 Primitive
2 Body centered
3 Face centered
4 End centered
CHXII01:THE SOLID STATE

318659 A compound has fcc structure. If density of unit cell is \(3.4 \mathrm{~g} \mathrm{~cm}^{-3}\), what is the edge length of unit cell?
\((\) Molar mass \(=98.99)\)

1 \({\rm{8}}{\rm{.780}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
2 \({\rm{6}}{\rm{.083}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
3 \({\rm{5}}{\rm{.783}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
4 \({\rm{7}}{\rm{.783}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \)
CHXII01:THE SOLID STATE

318660 When heated above \(916^{\circ} \mathrm{C}\), iron changes its \(\mathrm{BCC}\) crystalline form to FCC without the change in the radius of atom. The ratio of density of the crystal before heating and after heating is [atomic weight of \(\mathrm{Fe}=56\) ]

1 1.231
2 0.725
3 1.069
4 0.918
CHXII01:THE SOLID STATE

318661 \({\text{Ag}}\) crystallises as fcc. If radius of \(\mathrm{Ag}\) is \({\text{144 pm}}\) then its density will be

1 \(10 \mathrm{~g} \mathrm{~cm}^{-3}\)
2 \(5 \mathrm{~g} \mathrm{~cm}^{-3}\)
3 \(15 \mathrm{~g} \mathrm{~cm}^{-3}\)
4 \(6.5 \mathrm{~g} \mathrm{~cm}^{-3}\)