318666
Copper (atomic mass \({\mathrm{=63.5 \mathrm{~u}}}\) ) has fcc unit cell structure with edge length of x \( \mathop {\rm{A}}^{\circ} \). The approximate density of copper in \({\mathrm{\mathrm{~g} \mathrm{~cm}^{-3}}}\) is \({\mathrm{\left(\dfrac{\mathrm{y}}{x^{3}}\right)}}\).
Find the value of ' \({\mathrm{y}}\) ' (Avogadro's constant \({\mathrm{=6.0 \times 10^{23}}}\), At.wt. \({\mathrm{\left.\mathrm{Cu}=63.5 \mathrm{~u}\right)}}\)
318666
Copper (atomic mass \({\mathrm{=63.5 \mathrm{~u}}}\) ) has fcc unit cell structure with edge length of x \( \mathop {\rm{A}}^{\circ} \). The approximate density of copper in \({\mathrm{\mathrm{~g} \mathrm{~cm}^{-3}}}\) is \({\mathrm{\left(\dfrac{\mathrm{y}}{x^{3}}\right)}}\).
Find the value of ' \({\mathrm{y}}\) ' (Avogadro's constant \({\mathrm{=6.0 \times 10^{23}}}\), At.wt. \({\mathrm{\left.\mathrm{Cu}=63.5 \mathrm{~u}\right)}}\)
318666
Copper (atomic mass \({\mathrm{=63.5 \mathrm{~u}}}\) ) has fcc unit cell structure with edge length of x \( \mathop {\rm{A}}^{\circ} \). The approximate density of copper in \({\mathrm{\mathrm{~g} \mathrm{~cm}^{-3}}}\) is \({\mathrm{\left(\dfrac{\mathrm{y}}{x^{3}}\right)}}\).
Find the value of ' \({\mathrm{y}}\) ' (Avogadro's constant \({\mathrm{=6.0 \times 10^{23}}}\), At.wt. \({\mathrm{\left.\mathrm{Cu}=63.5 \mathrm{~u}\right)}}\)
318666
Copper (atomic mass \({\mathrm{=63.5 \mathrm{~u}}}\) ) has fcc unit cell structure with edge length of x \( \mathop {\rm{A}}^{\circ} \). The approximate density of copper in \({\mathrm{\mathrm{~g} \mathrm{~cm}^{-3}}}\) is \({\mathrm{\left(\dfrac{\mathrm{y}}{x^{3}}\right)}}\).
Find the value of ' \({\mathrm{y}}\) ' (Avogadro's constant \({\mathrm{=6.0 \times 10^{23}}}\), At.wt. \({\mathrm{\left.\mathrm{Cu}=63.5 \mathrm{~u}\right)}}\)
318666
Copper (atomic mass \({\mathrm{=63.5 \mathrm{~u}}}\) ) has fcc unit cell structure with edge length of x \( \mathop {\rm{A}}^{\circ} \). The approximate density of copper in \({\mathrm{\mathrm{~g} \mathrm{~cm}^{-3}}}\) is \({\mathrm{\left(\dfrac{\mathrm{y}}{x^{3}}\right)}}\).
Find the value of ' \({\mathrm{y}}\) ' (Avogadro's constant \({\mathrm{=6.0 \times 10^{23}}}\), At.wt. \({\mathrm{\left.\mathrm{Cu}=63.5 \mathrm{~u}\right)}}\)