Solubility Equilibria of Sparingly Soluble Salts
CHXI07:EQUILIBRIUM

314913 Solubility of calcium phosphate (molecular mass, \({\mathrm{\mathrm{\mathrm{M})}}}\) in water is Wg per 100 mL at \({\mathrm{\mathrm{25^{\circ} \mathrm{C}}}}\). Its solubility product at \({\mathrm{\mathrm{25^{\circ} \mathrm{C}}}}\) will be approximately

1 \({\mathrm{\mathrm{10^{7}\left(\dfrac{\mathrm{W}}{\mathrm{M}}\right)^{3}}}}\)
2 \({\mathrm{\mathrm{10^{3}\left(\dfrac{\mathrm{W}}{\mathrm{M}}\right)^{5}}}}\)
3 \({\mathrm{\mathrm{10^{7}\left(\dfrac{\mathrm{W}}{\mathrm{M}}\right)^{5}}}}\)
4 \({\mathrm{\mathrm{10^{5}\left(\dfrac{\mathrm{W}}{\mathrm{M}}\right)^{5}}}}\)
CHXI07:EQUILIBRIUM

314914 Given below are certain cations. Using inorganic qualitative analysis, arrange them in increasing group number from 0 to VI.
\[\begin{array}{l}
{\rm{(A)A}}{{\rm{l}}^{{\rm{3 + }}}}\quad {\rm{(B)C}}{{\rm{u}}^{{\rm{2 + }}}}\quad \\
{\rm{(C)B}}{{\rm{a}}^{{\rm{2 + }}}}\quad {\rm{(D)C}}{{\rm{o}}^{{\rm{2 + }}}}\quad \\
{\rm{(E)M}}{{\rm{g}}^{{\rm{2 + }}}}
\end{array}\]
Choose the correct answer from the options given below.

1 B, A, D, C, E
2 B, C, A, D, E
3 E, C, D, B, A
4 E, A, B, C, D
CHXI07:EQUILIBRIUM

314916 Equal volumes of several solutions at 0.10 molar concentration are mixed. The chart below indicates the interactions that took place between these solutions. What is the formula of the hypothetical compound that has low solubility?
\[\begin{array}{*{20}{c}}
{}&{{\rm{CX}}}&{{\rm{BY}}}&{{\rm{DY}}}\\
{{\rm{AX}}}&{\rm{ \ldots }}&{{\rm{Ppt}}}&{\rm{ \ldots }}\\
{{\rm{DY}}}&{\rm{ \ldots }}&{{\rm{ \ldots }}{\rm{.}}}&{}\\
{{\rm{CX}}}&{\rm{ \ldots }}&{{\rm{Ppt}}}&{}
\end{array}\]

1 \(\mathrm{CX}\)
2 \(\mathrm{BY}\)
3 \(\mathrm{AX}\)
4 \(\mathrm{BX}\)
CHXI07:EQUILIBRIUM

314917 Solid \(\mathrm{AgNO}_{3}\) is added to a solution which is 0.1 \(\mathrm{M}\) in \(\mathrm{CrO}_{4}^{2-} \cdot \mathrm{K}_{\text {sp }}\) values of \(\mathrm{AgCl}\) and \(\mathrm{AgCrO}_{4}\) are \(1.7 \times 10^{-10}\) and \(1.9 \times 10^{-12}\) respectively. The concentration of \(\mathrm{Cl}^{-}\)when \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\) starts precipitating will be:

1 \({\text{3}}{\text{.9 x 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ M}}\)
2 \({\text{2}}{\text{.9 x 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ M}}\)
3 \({\text{3}}{\text{.9 x 1}}{{\text{0}}^{{\text{ - 3}}}}{\text{ M}}\)
4 \({\text{1}}{\text{.9 x 1}}{{\text{0}}^{{\text{ - 2}}}}{\text{ M}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI07:EQUILIBRIUM

314913 Solubility of calcium phosphate (molecular mass, \({\mathrm{\mathrm{\mathrm{M})}}}\) in water is Wg per 100 mL at \({\mathrm{\mathrm{25^{\circ} \mathrm{C}}}}\). Its solubility product at \({\mathrm{\mathrm{25^{\circ} \mathrm{C}}}}\) will be approximately

1 \({\mathrm{\mathrm{10^{7}\left(\dfrac{\mathrm{W}}{\mathrm{M}}\right)^{3}}}}\)
2 \({\mathrm{\mathrm{10^{3}\left(\dfrac{\mathrm{W}}{\mathrm{M}}\right)^{5}}}}\)
3 \({\mathrm{\mathrm{10^{7}\left(\dfrac{\mathrm{W}}{\mathrm{M}}\right)^{5}}}}\)
4 \({\mathrm{\mathrm{10^{5}\left(\dfrac{\mathrm{W}}{\mathrm{M}}\right)^{5}}}}\)
CHXI07:EQUILIBRIUM

314914 Given below are certain cations. Using inorganic qualitative analysis, arrange them in increasing group number from 0 to VI.
\[\begin{array}{l}
{\rm{(A)A}}{{\rm{l}}^{{\rm{3 + }}}}\quad {\rm{(B)C}}{{\rm{u}}^{{\rm{2 + }}}}\quad \\
{\rm{(C)B}}{{\rm{a}}^{{\rm{2 + }}}}\quad {\rm{(D)C}}{{\rm{o}}^{{\rm{2 + }}}}\quad \\
{\rm{(E)M}}{{\rm{g}}^{{\rm{2 + }}}}
\end{array}\]
Choose the correct answer from the options given below.

1 B, A, D, C, E
2 B, C, A, D, E
3 E, C, D, B, A
4 E, A, B, C, D
CHXI07:EQUILIBRIUM

314916 Equal volumes of several solutions at 0.10 molar concentration are mixed. The chart below indicates the interactions that took place between these solutions. What is the formula of the hypothetical compound that has low solubility?
\[\begin{array}{*{20}{c}}
{}&{{\rm{CX}}}&{{\rm{BY}}}&{{\rm{DY}}}\\
{{\rm{AX}}}&{\rm{ \ldots }}&{{\rm{Ppt}}}&{\rm{ \ldots }}\\
{{\rm{DY}}}&{\rm{ \ldots }}&{{\rm{ \ldots }}{\rm{.}}}&{}\\
{{\rm{CX}}}&{\rm{ \ldots }}&{{\rm{Ppt}}}&{}
\end{array}\]

1 \(\mathrm{CX}\)
2 \(\mathrm{BY}\)
3 \(\mathrm{AX}\)
4 \(\mathrm{BX}\)
CHXI07:EQUILIBRIUM

314917 Solid \(\mathrm{AgNO}_{3}\) is added to a solution which is 0.1 \(\mathrm{M}\) in \(\mathrm{CrO}_{4}^{2-} \cdot \mathrm{K}_{\text {sp }}\) values of \(\mathrm{AgCl}\) and \(\mathrm{AgCrO}_{4}\) are \(1.7 \times 10^{-10}\) and \(1.9 \times 10^{-12}\) respectively. The concentration of \(\mathrm{Cl}^{-}\)when \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\) starts precipitating will be:

1 \({\text{3}}{\text{.9 x 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ M}}\)
2 \({\text{2}}{\text{.9 x 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ M}}\)
3 \({\text{3}}{\text{.9 x 1}}{{\text{0}}^{{\text{ - 3}}}}{\text{ M}}\)
4 \({\text{1}}{\text{.9 x 1}}{{\text{0}}^{{\text{ - 2}}}}{\text{ M}}\)
CHXI07:EQUILIBRIUM

314913 Solubility of calcium phosphate (molecular mass, \({\mathrm{\mathrm{\mathrm{M})}}}\) in water is Wg per 100 mL at \({\mathrm{\mathrm{25^{\circ} \mathrm{C}}}}\). Its solubility product at \({\mathrm{\mathrm{25^{\circ} \mathrm{C}}}}\) will be approximately

1 \({\mathrm{\mathrm{10^{7}\left(\dfrac{\mathrm{W}}{\mathrm{M}}\right)^{3}}}}\)
2 \({\mathrm{\mathrm{10^{3}\left(\dfrac{\mathrm{W}}{\mathrm{M}}\right)^{5}}}}\)
3 \({\mathrm{\mathrm{10^{7}\left(\dfrac{\mathrm{W}}{\mathrm{M}}\right)^{5}}}}\)
4 \({\mathrm{\mathrm{10^{5}\left(\dfrac{\mathrm{W}}{\mathrm{M}}\right)^{5}}}}\)
CHXI07:EQUILIBRIUM

314914 Given below are certain cations. Using inorganic qualitative analysis, arrange them in increasing group number from 0 to VI.
\[\begin{array}{l}
{\rm{(A)A}}{{\rm{l}}^{{\rm{3 + }}}}\quad {\rm{(B)C}}{{\rm{u}}^{{\rm{2 + }}}}\quad \\
{\rm{(C)B}}{{\rm{a}}^{{\rm{2 + }}}}\quad {\rm{(D)C}}{{\rm{o}}^{{\rm{2 + }}}}\quad \\
{\rm{(E)M}}{{\rm{g}}^{{\rm{2 + }}}}
\end{array}\]
Choose the correct answer from the options given below.

1 B, A, D, C, E
2 B, C, A, D, E
3 E, C, D, B, A
4 E, A, B, C, D
CHXI07:EQUILIBRIUM

314916 Equal volumes of several solutions at 0.10 molar concentration are mixed. The chart below indicates the interactions that took place between these solutions. What is the formula of the hypothetical compound that has low solubility?
\[\begin{array}{*{20}{c}}
{}&{{\rm{CX}}}&{{\rm{BY}}}&{{\rm{DY}}}\\
{{\rm{AX}}}&{\rm{ \ldots }}&{{\rm{Ppt}}}&{\rm{ \ldots }}\\
{{\rm{DY}}}&{\rm{ \ldots }}&{{\rm{ \ldots }}{\rm{.}}}&{}\\
{{\rm{CX}}}&{\rm{ \ldots }}&{{\rm{Ppt}}}&{}
\end{array}\]

1 \(\mathrm{CX}\)
2 \(\mathrm{BY}\)
3 \(\mathrm{AX}\)
4 \(\mathrm{BX}\)
CHXI07:EQUILIBRIUM

314917 Solid \(\mathrm{AgNO}_{3}\) is added to a solution which is 0.1 \(\mathrm{M}\) in \(\mathrm{CrO}_{4}^{2-} \cdot \mathrm{K}_{\text {sp }}\) values of \(\mathrm{AgCl}\) and \(\mathrm{AgCrO}_{4}\) are \(1.7 \times 10^{-10}\) and \(1.9 \times 10^{-12}\) respectively. The concentration of \(\mathrm{Cl}^{-}\)when \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\) starts precipitating will be:

1 \({\text{3}}{\text{.9 x 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ M}}\)
2 \({\text{2}}{\text{.9 x 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ M}}\)
3 \({\text{3}}{\text{.9 x 1}}{{\text{0}}^{{\text{ - 3}}}}{\text{ M}}\)
4 \({\text{1}}{\text{.9 x 1}}{{\text{0}}^{{\text{ - 2}}}}{\text{ M}}\)
CHXI07:EQUILIBRIUM

314913 Solubility of calcium phosphate (molecular mass, \({\mathrm{\mathrm{\mathrm{M})}}}\) in water is Wg per 100 mL at \({\mathrm{\mathrm{25^{\circ} \mathrm{C}}}}\). Its solubility product at \({\mathrm{\mathrm{25^{\circ} \mathrm{C}}}}\) will be approximately

1 \({\mathrm{\mathrm{10^{7}\left(\dfrac{\mathrm{W}}{\mathrm{M}}\right)^{3}}}}\)
2 \({\mathrm{\mathrm{10^{3}\left(\dfrac{\mathrm{W}}{\mathrm{M}}\right)^{5}}}}\)
3 \({\mathrm{\mathrm{10^{7}\left(\dfrac{\mathrm{W}}{\mathrm{M}}\right)^{5}}}}\)
4 \({\mathrm{\mathrm{10^{5}\left(\dfrac{\mathrm{W}}{\mathrm{M}}\right)^{5}}}}\)
CHXI07:EQUILIBRIUM

314914 Given below are certain cations. Using inorganic qualitative analysis, arrange them in increasing group number from 0 to VI.
\[\begin{array}{l}
{\rm{(A)A}}{{\rm{l}}^{{\rm{3 + }}}}\quad {\rm{(B)C}}{{\rm{u}}^{{\rm{2 + }}}}\quad \\
{\rm{(C)B}}{{\rm{a}}^{{\rm{2 + }}}}\quad {\rm{(D)C}}{{\rm{o}}^{{\rm{2 + }}}}\quad \\
{\rm{(E)M}}{{\rm{g}}^{{\rm{2 + }}}}
\end{array}\]
Choose the correct answer from the options given below.

1 B, A, D, C, E
2 B, C, A, D, E
3 E, C, D, B, A
4 E, A, B, C, D
CHXI07:EQUILIBRIUM

314916 Equal volumes of several solutions at 0.10 molar concentration are mixed. The chart below indicates the interactions that took place between these solutions. What is the formula of the hypothetical compound that has low solubility?
\[\begin{array}{*{20}{c}}
{}&{{\rm{CX}}}&{{\rm{BY}}}&{{\rm{DY}}}\\
{{\rm{AX}}}&{\rm{ \ldots }}&{{\rm{Ppt}}}&{\rm{ \ldots }}\\
{{\rm{DY}}}&{\rm{ \ldots }}&{{\rm{ \ldots }}{\rm{.}}}&{}\\
{{\rm{CX}}}&{\rm{ \ldots }}&{{\rm{Ppt}}}&{}
\end{array}\]

1 \(\mathrm{CX}\)
2 \(\mathrm{BY}\)
3 \(\mathrm{AX}\)
4 \(\mathrm{BX}\)
CHXI07:EQUILIBRIUM

314917 Solid \(\mathrm{AgNO}_{3}\) is added to a solution which is 0.1 \(\mathrm{M}\) in \(\mathrm{CrO}_{4}^{2-} \cdot \mathrm{K}_{\text {sp }}\) values of \(\mathrm{AgCl}\) and \(\mathrm{AgCrO}_{4}\) are \(1.7 \times 10^{-10}\) and \(1.9 \times 10^{-12}\) respectively. The concentration of \(\mathrm{Cl}^{-}\)when \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\) starts precipitating will be:

1 \({\text{3}}{\text{.9 x 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ M}}\)
2 \({\text{2}}{\text{.9 x 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ M}}\)
3 \({\text{3}}{\text{.9 x 1}}{{\text{0}}^{{\text{ - 3}}}}{\text{ M}}\)
4 \({\text{1}}{\text{.9 x 1}}{{\text{0}}^{{\text{ - 2}}}}{\text{ M}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here