Digital Electronics, Logic gates and Digital Circuit
Semiconductor Electronics Material Devices and Simple Circuits

151277 For the combination of gates shown here, which of the following truth table part is not true?
original image

1 \(\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=1\)
2 \(\mathrm{A}=0, \mathrm{~B}=0, \mathrm{C}=0\)
3 \(\mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=1\)
4 \(\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=1\)
Semiconductor Electronics Material Devices and Simple Circuits

151282 A logic gate and its truth table are shown below
original image
{|l|l|l|}
| \(\) \(\) \(\)\)|
|---|
\( 0 0 0\)
\(0 1 1\)
\(1 0 1\)
\(1 1 1\)
\(
The gate is :

1 NOR
2 AND
3 OR
4 NOT
Semiconductor Electronics Material Devices and Simple Circuits

151283 A gate in which all inputs must be low to get a high output is called :

1 a NAND gate
2 an inverter
3 a NOR gate
4 an AND gate
Semiconductor Electronics Material Devices and Simple Circuits

151285 Three variable Boolean expression \(P Q+P Q R\) \(+\overline{\mathrm{P}} \mathrm{Q}+\mathrm{P} \overline{\mathrm{Q}} \mathrm{R}\) can be written as

1 \(\overline{\mathrm{Q}}+\overline{\mathrm{P}} \mathrm{R}\)
2 \(\overline{\mathrm{P}}+\overline{\mathrm{Q}} \mathrm{R}\)
3 \(\mathrm{Q}+\mathrm{PR}\)
4 \(\mathrm{Q}+\overline{\mathrm{P}} \mathrm{R}\)
5 \(\mathrm{P}+\mathrm{QR}\)
Semiconductor Electronics Material Devices and Simple Circuits

151286 The circuit gives the output as that of
original image

1 AND gate
2 OR gate
3 NAND gate
4 NOR gate
5 NOT gate
Semiconductor Electronics Material Devices and Simple Circuits

151277 For the combination of gates shown here, which of the following truth table part is not true?
original image

1 \(\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=1\)
2 \(\mathrm{A}=0, \mathrm{~B}=0, \mathrm{C}=0\)
3 \(\mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=1\)
4 \(\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=1\)
Semiconductor Electronics Material Devices and Simple Circuits

151282 A logic gate and its truth table are shown below
original image
{|l|l|l|}
| \(\) \(\) \(\)\)|
|---|
\( 0 0 0\)
\(0 1 1\)
\(1 0 1\)
\(1 1 1\)
\(
The gate is :

1 NOR
2 AND
3 OR
4 NOT
Semiconductor Electronics Material Devices and Simple Circuits

151283 A gate in which all inputs must be low to get a high output is called :

1 a NAND gate
2 an inverter
3 a NOR gate
4 an AND gate
Semiconductor Electronics Material Devices and Simple Circuits

151285 Three variable Boolean expression \(P Q+P Q R\) \(+\overline{\mathrm{P}} \mathrm{Q}+\mathrm{P} \overline{\mathrm{Q}} \mathrm{R}\) can be written as

1 \(\overline{\mathrm{Q}}+\overline{\mathrm{P}} \mathrm{R}\)
2 \(\overline{\mathrm{P}}+\overline{\mathrm{Q}} \mathrm{R}\)
3 \(\mathrm{Q}+\mathrm{PR}\)
4 \(\mathrm{Q}+\overline{\mathrm{P}} \mathrm{R}\)
5 \(\mathrm{P}+\mathrm{QR}\)
Semiconductor Electronics Material Devices and Simple Circuits

151286 The circuit gives the output as that of
original image

1 AND gate
2 OR gate
3 NAND gate
4 NOR gate
5 NOT gate
Semiconductor Electronics Material Devices and Simple Circuits

151277 For the combination of gates shown here, which of the following truth table part is not true?
original image

1 \(\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=1\)
2 \(\mathrm{A}=0, \mathrm{~B}=0, \mathrm{C}=0\)
3 \(\mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=1\)
4 \(\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=1\)
Semiconductor Electronics Material Devices and Simple Circuits

151282 A logic gate and its truth table are shown below
original image
{|l|l|l|}
| \(\) \(\) \(\)\)|
|---|
\( 0 0 0\)
\(0 1 1\)
\(1 0 1\)
\(1 1 1\)
\(
The gate is :

1 NOR
2 AND
3 OR
4 NOT
Semiconductor Electronics Material Devices and Simple Circuits

151283 A gate in which all inputs must be low to get a high output is called :

1 a NAND gate
2 an inverter
3 a NOR gate
4 an AND gate
Semiconductor Electronics Material Devices and Simple Circuits

151285 Three variable Boolean expression \(P Q+P Q R\) \(+\overline{\mathrm{P}} \mathrm{Q}+\mathrm{P} \overline{\mathrm{Q}} \mathrm{R}\) can be written as

1 \(\overline{\mathrm{Q}}+\overline{\mathrm{P}} \mathrm{R}\)
2 \(\overline{\mathrm{P}}+\overline{\mathrm{Q}} \mathrm{R}\)
3 \(\mathrm{Q}+\mathrm{PR}\)
4 \(\mathrm{Q}+\overline{\mathrm{P}} \mathrm{R}\)
5 \(\mathrm{P}+\mathrm{QR}\)
Semiconductor Electronics Material Devices and Simple Circuits

151286 The circuit gives the output as that of
original image

1 AND gate
2 OR gate
3 NAND gate
4 NOR gate
5 NOT gate
Semiconductor Electronics Material Devices and Simple Circuits

151277 For the combination of gates shown here, which of the following truth table part is not true?
original image

1 \(\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=1\)
2 \(\mathrm{A}=0, \mathrm{~B}=0, \mathrm{C}=0\)
3 \(\mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=1\)
4 \(\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=1\)
Semiconductor Electronics Material Devices and Simple Circuits

151282 A logic gate and its truth table are shown below
original image
{|l|l|l|}
| \(\) \(\) \(\)\)|
|---|
\( 0 0 0\)
\(0 1 1\)
\(1 0 1\)
\(1 1 1\)
\(
The gate is :

1 NOR
2 AND
3 OR
4 NOT
Semiconductor Electronics Material Devices and Simple Circuits

151283 A gate in which all inputs must be low to get a high output is called :

1 a NAND gate
2 an inverter
3 a NOR gate
4 an AND gate
Semiconductor Electronics Material Devices and Simple Circuits

151285 Three variable Boolean expression \(P Q+P Q R\) \(+\overline{\mathrm{P}} \mathrm{Q}+\mathrm{P} \overline{\mathrm{Q}} \mathrm{R}\) can be written as

1 \(\overline{\mathrm{Q}}+\overline{\mathrm{P}} \mathrm{R}\)
2 \(\overline{\mathrm{P}}+\overline{\mathrm{Q}} \mathrm{R}\)
3 \(\mathrm{Q}+\mathrm{PR}\)
4 \(\mathrm{Q}+\overline{\mathrm{P}} \mathrm{R}\)
5 \(\mathrm{P}+\mathrm{QR}\)
Semiconductor Electronics Material Devices and Simple Circuits

151286 The circuit gives the output as that of
original image

1 AND gate
2 OR gate
3 NAND gate
4 NOR gate
5 NOT gate
Semiconductor Electronics Material Devices and Simple Circuits

151277 For the combination of gates shown here, which of the following truth table part is not true?
original image

1 \(\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=1\)
2 \(\mathrm{A}=0, \mathrm{~B}=0, \mathrm{C}=0\)
3 \(\mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=1\)
4 \(\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=1\)
Semiconductor Electronics Material Devices and Simple Circuits

151282 A logic gate and its truth table are shown below
original image
{|l|l|l|}
| \(\) \(\) \(\)\)|
|---|
\( 0 0 0\)
\(0 1 1\)
\(1 0 1\)
\(1 1 1\)
\(
The gate is :

1 NOR
2 AND
3 OR
4 NOT
Semiconductor Electronics Material Devices and Simple Circuits

151283 A gate in which all inputs must be low to get a high output is called :

1 a NAND gate
2 an inverter
3 a NOR gate
4 an AND gate
Semiconductor Electronics Material Devices and Simple Circuits

151285 Three variable Boolean expression \(P Q+P Q R\) \(+\overline{\mathrm{P}} \mathrm{Q}+\mathrm{P} \overline{\mathrm{Q}} \mathrm{R}\) can be written as

1 \(\overline{\mathrm{Q}}+\overline{\mathrm{P}} \mathrm{R}\)
2 \(\overline{\mathrm{P}}+\overline{\mathrm{Q}} \mathrm{R}\)
3 \(\mathrm{Q}+\mathrm{PR}\)
4 \(\mathrm{Q}+\overline{\mathrm{P}} \mathrm{R}\)
5 \(\mathrm{P}+\mathrm{QR}\)
Semiconductor Electronics Material Devices and Simple Circuits

151286 The circuit gives the output as that of
original image

1 AND gate
2 OR gate
3 NAND gate
4 NOR gate
5 NOT gate