Energy Bands (Valance, Conduction, Energy Gap), Conductor Insulator and Semiconductor
Semiconductor Electronics Material Devices and Simple Circuits

150497 Carbon, silicon and germanium atoms have four valence electrons each. Their valence and conduction bands are separated by energy band gaps represented by \(\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{C}},\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}\) and \(\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Ge}}\) respectively. Which one of the following relationships is true in their case?

1 \(\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{C}}>\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}\)
2 \(\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{C}}=\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}\)
3 \(\left(\mathrm{Eg}_{\mathrm{g}}, \lt \left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Ge}}\right.\)
4 \(\left(\mathrm{Eg}_{\mathrm{g}}\right)_{\mathrm{C}} \lt \left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}\)
Semiconductor Electronics Material Devices and Simple Circuits

150499 The electron density of intrinsic semiconductor at room temperature is \(10^{16} \mathrm{~m}^{-3}\). When doped with a trivalent impurity, the electron density is decreased to \(10^{14} \mathrm{~m}^{-3}\) at the same temperature. The majority carrier density is

1 \(10^{16} \mathrm{~m}^{-3}\)
2 \(10^{18} \mathrm{~m}^{-3}\)
3 \(10^{21} \mathrm{~m}^{-3}\)
4 \(10^{20} \mathrm{~m}^{-3}\)
5 \(10^{19} \mathrm{~m}^{-3}\)
Semiconductor Electronics Material Devices and Simple Circuits

150501 A pure semiconductor has equal electron and hole concentration of \(10^{16} \mathrm{~m}^{-3}\). Doping by indium increases \(\mathrm{n}_{\mathrm{h}}\) to \(5 \times 10^{22} \mathrm{~m}^{-3}\). Then, the value of \(n_e\) in the doped semiconductor is

1 \(10^6 / \mathrm{m}^3\)
2 \(10^{22} / \mathrm{m}^3\)
3 \(2 \times 10^6 / \mathrm{m}^3\)
4 \(10^{19} / \mathrm{m}^3\)
5 \(2 \times 10^9 / \mathrm{m}^3\)
Semiconductor Electronics Material Devices and Simple Circuits

150503 A silicon specimen is made into a p-type semiconductor by doping, on an average, one indium atom per \(5 \times 10^7\) silicon atoms. If the number density of atoms in the silicon specimen is \(5 \times 10^{28}\) atom \(/ \mathrm{m}^3\), then the number of acceptor atoms in silicon per cubic centimeter will be :

1 \(2.5 \times 10^{30}\) atom \(/ \mathrm{cm}^3\)
2 \(2.5 \times 10^{35}\) atom \(/ \mathrm{cm}^3\)
3 \(1 \times 10^{13}\) atom \(/ \mathrm{cm}^3\)
4 \(1 \times 10^{15}\) atom \(/ \mathrm{cm}^3\)
5 none of the above
Semiconductor Electronics Material Devices and Simple Circuits

150497 Carbon, silicon and germanium atoms have four valence electrons each. Their valence and conduction bands are separated by energy band gaps represented by \(\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{C}},\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}\) and \(\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Ge}}\) respectively. Which one of the following relationships is true in their case?

1 \(\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{C}}>\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}\)
2 \(\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{C}}=\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}\)
3 \(\left(\mathrm{Eg}_{\mathrm{g}}, \lt \left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Ge}}\right.\)
4 \(\left(\mathrm{Eg}_{\mathrm{g}}\right)_{\mathrm{C}} \lt \left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}\)
Semiconductor Electronics Material Devices and Simple Circuits

150499 The electron density of intrinsic semiconductor at room temperature is \(10^{16} \mathrm{~m}^{-3}\). When doped with a trivalent impurity, the electron density is decreased to \(10^{14} \mathrm{~m}^{-3}\) at the same temperature. The majority carrier density is

1 \(10^{16} \mathrm{~m}^{-3}\)
2 \(10^{18} \mathrm{~m}^{-3}\)
3 \(10^{21} \mathrm{~m}^{-3}\)
4 \(10^{20} \mathrm{~m}^{-3}\)
5 \(10^{19} \mathrm{~m}^{-3}\)
Semiconductor Electronics Material Devices and Simple Circuits

150501 A pure semiconductor has equal electron and hole concentration of \(10^{16} \mathrm{~m}^{-3}\). Doping by indium increases \(\mathrm{n}_{\mathrm{h}}\) to \(5 \times 10^{22} \mathrm{~m}^{-3}\). Then, the value of \(n_e\) in the doped semiconductor is

1 \(10^6 / \mathrm{m}^3\)
2 \(10^{22} / \mathrm{m}^3\)
3 \(2 \times 10^6 / \mathrm{m}^3\)
4 \(10^{19} / \mathrm{m}^3\)
5 \(2 \times 10^9 / \mathrm{m}^3\)
Semiconductor Electronics Material Devices and Simple Circuits

150503 A silicon specimen is made into a p-type semiconductor by doping, on an average, one indium atom per \(5 \times 10^7\) silicon atoms. If the number density of atoms in the silicon specimen is \(5 \times 10^{28}\) atom \(/ \mathrm{m}^3\), then the number of acceptor atoms in silicon per cubic centimeter will be :

1 \(2.5 \times 10^{30}\) atom \(/ \mathrm{cm}^3\)
2 \(2.5 \times 10^{35}\) atom \(/ \mathrm{cm}^3\)
3 \(1 \times 10^{13}\) atom \(/ \mathrm{cm}^3\)
4 \(1 \times 10^{15}\) atom \(/ \mathrm{cm}^3\)
5 none of the above
Semiconductor Electronics Material Devices and Simple Circuits

150497 Carbon, silicon and germanium atoms have four valence electrons each. Their valence and conduction bands are separated by energy band gaps represented by \(\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{C}},\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}\) and \(\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Ge}}\) respectively. Which one of the following relationships is true in their case?

1 \(\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{C}}>\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}\)
2 \(\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{C}}=\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}\)
3 \(\left(\mathrm{Eg}_{\mathrm{g}}, \lt \left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Ge}}\right.\)
4 \(\left(\mathrm{Eg}_{\mathrm{g}}\right)_{\mathrm{C}} \lt \left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}\)
Semiconductor Electronics Material Devices and Simple Circuits

150499 The electron density of intrinsic semiconductor at room temperature is \(10^{16} \mathrm{~m}^{-3}\). When doped with a trivalent impurity, the electron density is decreased to \(10^{14} \mathrm{~m}^{-3}\) at the same temperature. The majority carrier density is

1 \(10^{16} \mathrm{~m}^{-3}\)
2 \(10^{18} \mathrm{~m}^{-3}\)
3 \(10^{21} \mathrm{~m}^{-3}\)
4 \(10^{20} \mathrm{~m}^{-3}\)
5 \(10^{19} \mathrm{~m}^{-3}\)
Semiconductor Electronics Material Devices and Simple Circuits

150501 A pure semiconductor has equal electron and hole concentration of \(10^{16} \mathrm{~m}^{-3}\). Doping by indium increases \(\mathrm{n}_{\mathrm{h}}\) to \(5 \times 10^{22} \mathrm{~m}^{-3}\). Then, the value of \(n_e\) in the doped semiconductor is

1 \(10^6 / \mathrm{m}^3\)
2 \(10^{22} / \mathrm{m}^3\)
3 \(2 \times 10^6 / \mathrm{m}^3\)
4 \(10^{19} / \mathrm{m}^3\)
5 \(2 \times 10^9 / \mathrm{m}^3\)
Semiconductor Electronics Material Devices and Simple Circuits

150503 A silicon specimen is made into a p-type semiconductor by doping, on an average, one indium atom per \(5 \times 10^7\) silicon atoms. If the number density of atoms in the silicon specimen is \(5 \times 10^{28}\) atom \(/ \mathrm{m}^3\), then the number of acceptor atoms in silicon per cubic centimeter will be :

1 \(2.5 \times 10^{30}\) atom \(/ \mathrm{cm}^3\)
2 \(2.5 \times 10^{35}\) atom \(/ \mathrm{cm}^3\)
3 \(1 \times 10^{13}\) atom \(/ \mathrm{cm}^3\)
4 \(1 \times 10^{15}\) atom \(/ \mathrm{cm}^3\)
5 none of the above
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Semiconductor Electronics Material Devices and Simple Circuits

150497 Carbon, silicon and germanium atoms have four valence electrons each. Their valence and conduction bands are separated by energy band gaps represented by \(\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{C}},\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}\) and \(\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Ge}}\) respectively. Which one of the following relationships is true in their case?

1 \(\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{C}}>\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}\)
2 \(\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{C}}=\left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}\)
3 \(\left(\mathrm{Eg}_{\mathrm{g}}, \lt \left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Ge}}\right.\)
4 \(\left(\mathrm{Eg}_{\mathrm{g}}\right)_{\mathrm{C}} \lt \left(\mathrm{E}_{\mathrm{g}}\right)_{\mathrm{Si}}\)
Semiconductor Electronics Material Devices and Simple Circuits

150499 The electron density of intrinsic semiconductor at room temperature is \(10^{16} \mathrm{~m}^{-3}\). When doped with a trivalent impurity, the electron density is decreased to \(10^{14} \mathrm{~m}^{-3}\) at the same temperature. The majority carrier density is

1 \(10^{16} \mathrm{~m}^{-3}\)
2 \(10^{18} \mathrm{~m}^{-3}\)
3 \(10^{21} \mathrm{~m}^{-3}\)
4 \(10^{20} \mathrm{~m}^{-3}\)
5 \(10^{19} \mathrm{~m}^{-3}\)
Semiconductor Electronics Material Devices and Simple Circuits

150501 A pure semiconductor has equal electron and hole concentration of \(10^{16} \mathrm{~m}^{-3}\). Doping by indium increases \(\mathrm{n}_{\mathrm{h}}\) to \(5 \times 10^{22} \mathrm{~m}^{-3}\). Then, the value of \(n_e\) in the doped semiconductor is

1 \(10^6 / \mathrm{m}^3\)
2 \(10^{22} / \mathrm{m}^3\)
3 \(2 \times 10^6 / \mathrm{m}^3\)
4 \(10^{19} / \mathrm{m}^3\)
5 \(2 \times 10^9 / \mathrm{m}^3\)
Semiconductor Electronics Material Devices and Simple Circuits

150503 A silicon specimen is made into a p-type semiconductor by doping, on an average, one indium atom per \(5 \times 10^7\) silicon atoms. If the number density of atoms in the silicon specimen is \(5 \times 10^{28}\) atom \(/ \mathrm{m}^3\), then the number of acceptor atoms in silicon per cubic centimeter will be :

1 \(2.5 \times 10^{30}\) atom \(/ \mathrm{cm}^3\)
2 \(2.5 \times 10^{35}\) atom \(/ \mathrm{cm}^3\)
3 \(1 \times 10^{13}\) atom \(/ \mathrm{cm}^3\)
4 \(1 \times 10^{15}\) atom \(/ \mathrm{cm}^3\)
5 none of the above