Wave and Wave characteristics
WAVES

172160 A given metal wire has length $1 \mathrm{~m}$, linear density $0.6 \mathrm{~kg} / \mathrm{m}$ and uniform cross-sectional area $10^{-7} \mathrm{~m}^{2}$ is fixed at both ends. The temperature of wire is decreased by $40^{\circ} \mathrm{C}$. The fundamental frequency of the transverse wave is $Y=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$, coefficient of linear expansion of metal is $=1.2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$

1 $2 \mathrm{~Hz}$
2 $2.5 \mathrm{~Hz}$
3 $1 \mathrm{~Hz}$
4 $0.5 \mathrm{~Hz}$
WAVES

172162 The equation of a wave is given by $y=10$ $\sin \left(\left(\frac{2 \pi}{45}\right) t+\alpha\right)$. If the displacement at $t=0 \mathrm{~s}$ is $5 \mathrm{~cm}$, then the total phase at $\mathrm{t}=7.5 \mathrm{~s}$ is

1 $\frac{\pi}{3}$
2 $\frac{\pi}{2}$
3 $\frac{\pi}{6}$
4 $\pi$
WAVES

172164 Two waves are represented by $x_{1}=A \sin \left(\omega t+\frac{\pi}{6}\right)$ and $x_{2}=A \cos \omega t$. Then the phase difference between them is

1 $\frac{\pi}{6}$
2 $\frac{\pi}{2}$
3 $\frac{\pi}{3}$
4 $\pi$
WAVES

172165 Match the following
| Column-I | Column-II |
| :--- | :--- |
| (A) Transverse wave
through a steel rod | (i) $\sqrt{B+\left(\frac{4}{3}\right) \underline{\eta}}$ |
| (B) Longitudinal waves in
earth's crust | (ii) $\sqrt{\frac{\eta}{\rho}}$ |
| (C) Longitudinal waves
through a steel rod | (iii) $\sqrt{\frac{2 \pi T}{g \lambda}}$ |
| (D) Ripples | (iv) $\sqrt{\frac{\lambda}{\rho}}$ |

1 (A - ii), (B - i), (C - iv), (D - iii)
2 $(\mathrm{A}-\mathrm{i}),(\mathrm{B}-\mathrm{iii}),(\mathrm{C}-\mathrm{iv}),(\mathrm{D}-\mathrm{ii})$
3 $(\mathrm{A}-\mathrm{iii}),(\mathrm{B}-\mathrm{iv}),(\mathrm{C}-\mathrm{i}),(\mathrm{D}-\mathrm{ii})$
4 $(\mathrm{A}-\mathrm{ii}),(\mathrm{B}-\mathrm{iv}),(\mathrm{C}-\mathrm{i}),(\mathrm{D}-\mathrm{iii})$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
WAVES

172160 A given metal wire has length $1 \mathrm{~m}$, linear density $0.6 \mathrm{~kg} / \mathrm{m}$ and uniform cross-sectional area $10^{-7} \mathrm{~m}^{2}$ is fixed at both ends. The temperature of wire is decreased by $40^{\circ} \mathrm{C}$. The fundamental frequency of the transverse wave is $Y=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$, coefficient of linear expansion of metal is $=1.2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$

1 $2 \mathrm{~Hz}$
2 $2.5 \mathrm{~Hz}$
3 $1 \mathrm{~Hz}$
4 $0.5 \mathrm{~Hz}$
WAVES

172162 The equation of a wave is given by $y=10$ $\sin \left(\left(\frac{2 \pi}{45}\right) t+\alpha\right)$. If the displacement at $t=0 \mathrm{~s}$ is $5 \mathrm{~cm}$, then the total phase at $\mathrm{t}=7.5 \mathrm{~s}$ is

1 $\frac{\pi}{3}$
2 $\frac{\pi}{2}$
3 $\frac{\pi}{6}$
4 $\pi$
WAVES

172164 Two waves are represented by $x_{1}=A \sin \left(\omega t+\frac{\pi}{6}\right)$ and $x_{2}=A \cos \omega t$. Then the phase difference between them is

1 $\frac{\pi}{6}$
2 $\frac{\pi}{2}$
3 $\frac{\pi}{3}$
4 $\pi$
WAVES

172165 Match the following
| Column-I | Column-II |
| :--- | :--- |
| (A) Transverse wave
through a steel rod | (i) $\sqrt{B+\left(\frac{4}{3}\right) \underline{\eta}}$ |
| (B) Longitudinal waves in
earth's crust | (ii) $\sqrt{\frac{\eta}{\rho}}$ |
| (C) Longitudinal waves
through a steel rod | (iii) $\sqrt{\frac{2 \pi T}{g \lambda}}$ |
| (D) Ripples | (iv) $\sqrt{\frac{\lambda}{\rho}}$ |

1 (A - ii), (B - i), (C - iv), (D - iii)
2 $(\mathrm{A}-\mathrm{i}),(\mathrm{B}-\mathrm{iii}),(\mathrm{C}-\mathrm{iv}),(\mathrm{D}-\mathrm{ii})$
3 $(\mathrm{A}-\mathrm{iii}),(\mathrm{B}-\mathrm{iv}),(\mathrm{C}-\mathrm{i}),(\mathrm{D}-\mathrm{ii})$
4 $(\mathrm{A}-\mathrm{ii}),(\mathrm{B}-\mathrm{iv}),(\mathrm{C}-\mathrm{i}),(\mathrm{D}-\mathrm{iii})$
WAVES

172160 A given metal wire has length $1 \mathrm{~m}$, linear density $0.6 \mathrm{~kg} / \mathrm{m}$ and uniform cross-sectional area $10^{-7} \mathrm{~m}^{2}$ is fixed at both ends. The temperature of wire is decreased by $40^{\circ} \mathrm{C}$. The fundamental frequency of the transverse wave is $Y=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$, coefficient of linear expansion of metal is $=1.2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$

1 $2 \mathrm{~Hz}$
2 $2.5 \mathrm{~Hz}$
3 $1 \mathrm{~Hz}$
4 $0.5 \mathrm{~Hz}$
WAVES

172162 The equation of a wave is given by $y=10$ $\sin \left(\left(\frac{2 \pi}{45}\right) t+\alpha\right)$. If the displacement at $t=0 \mathrm{~s}$ is $5 \mathrm{~cm}$, then the total phase at $\mathrm{t}=7.5 \mathrm{~s}$ is

1 $\frac{\pi}{3}$
2 $\frac{\pi}{2}$
3 $\frac{\pi}{6}$
4 $\pi$
WAVES

172164 Two waves are represented by $x_{1}=A \sin \left(\omega t+\frac{\pi}{6}\right)$ and $x_{2}=A \cos \omega t$. Then the phase difference between them is

1 $\frac{\pi}{6}$
2 $\frac{\pi}{2}$
3 $\frac{\pi}{3}$
4 $\pi$
WAVES

172165 Match the following
| Column-I | Column-II |
| :--- | :--- |
| (A) Transverse wave
through a steel rod | (i) $\sqrt{B+\left(\frac{4}{3}\right) \underline{\eta}}$ |
| (B) Longitudinal waves in
earth's crust | (ii) $\sqrt{\frac{\eta}{\rho}}$ |
| (C) Longitudinal waves
through a steel rod | (iii) $\sqrt{\frac{2 \pi T}{g \lambda}}$ |
| (D) Ripples | (iv) $\sqrt{\frac{\lambda}{\rho}}$ |

1 (A - ii), (B - i), (C - iv), (D - iii)
2 $(\mathrm{A}-\mathrm{i}),(\mathrm{B}-\mathrm{iii}),(\mathrm{C}-\mathrm{iv}),(\mathrm{D}-\mathrm{ii})$
3 $(\mathrm{A}-\mathrm{iii}),(\mathrm{B}-\mathrm{iv}),(\mathrm{C}-\mathrm{i}),(\mathrm{D}-\mathrm{ii})$
4 $(\mathrm{A}-\mathrm{ii}),(\mathrm{B}-\mathrm{iv}),(\mathrm{C}-\mathrm{i}),(\mathrm{D}-\mathrm{iii})$
WAVES

172160 A given metal wire has length $1 \mathrm{~m}$, linear density $0.6 \mathrm{~kg} / \mathrm{m}$ and uniform cross-sectional area $10^{-7} \mathrm{~m}^{2}$ is fixed at both ends. The temperature of wire is decreased by $40^{\circ} \mathrm{C}$. The fundamental frequency of the transverse wave is $Y=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$, coefficient of linear expansion of metal is $=1.2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$

1 $2 \mathrm{~Hz}$
2 $2.5 \mathrm{~Hz}$
3 $1 \mathrm{~Hz}$
4 $0.5 \mathrm{~Hz}$
WAVES

172162 The equation of a wave is given by $y=10$ $\sin \left(\left(\frac{2 \pi}{45}\right) t+\alpha\right)$. If the displacement at $t=0 \mathrm{~s}$ is $5 \mathrm{~cm}$, then the total phase at $\mathrm{t}=7.5 \mathrm{~s}$ is

1 $\frac{\pi}{3}$
2 $\frac{\pi}{2}$
3 $\frac{\pi}{6}$
4 $\pi$
WAVES

172164 Two waves are represented by $x_{1}=A \sin \left(\omega t+\frac{\pi}{6}\right)$ and $x_{2}=A \cos \omega t$. Then the phase difference between them is

1 $\frac{\pi}{6}$
2 $\frac{\pi}{2}$
3 $\frac{\pi}{3}$
4 $\pi$
WAVES

172165 Match the following
| Column-I | Column-II |
| :--- | :--- |
| (A) Transverse wave
through a steel rod | (i) $\sqrt{B+\left(\frac{4}{3}\right) \underline{\eta}}$ |
| (B) Longitudinal waves in
earth's crust | (ii) $\sqrt{\frac{\eta}{\rho}}$ |
| (C) Longitudinal waves
through a steel rod | (iii) $\sqrt{\frac{2 \pi T}{g \lambda}}$ |
| (D) Ripples | (iv) $\sqrt{\frac{\lambda}{\rho}}$ |

1 (A - ii), (B - i), (C - iv), (D - iii)
2 $(\mathrm{A}-\mathrm{i}),(\mathrm{B}-\mathrm{iii}),(\mathrm{C}-\mathrm{iv}),(\mathrm{D}-\mathrm{ii})$
3 $(\mathrm{A}-\mathrm{iii}),(\mathrm{B}-\mathrm{iv}),(\mathrm{C}-\mathrm{i}),(\mathrm{D}-\mathrm{ii})$
4 $(\mathrm{A}-\mathrm{ii}),(\mathrm{B}-\mathrm{iv}),(\mathrm{C}-\mathrm{i}),(\mathrm{D}-\mathrm{iii})$