Wave and Wave characteristics
WAVES

172205 A standing wave propagating with velocity 300 $\mathrm{m} / \mathrm{s}$ in an open pipe of length $4 \mathrm{~m}$ has four nodes. The frequency of the wave is

1 $75 \mathrm{~Hz}$
2 $100 \mathrm{~Hz}$
3 $150 \mathrm{~Hz}$
4 $300 \mathrm{~Hz}$
5 $600 \mathrm{~Hz}$
WAVES

172206 The velocity $\vec{v}$ of a particle of mass ' $m$ ' acted upon by a constant force is given by $\overrightarrow{\mathrm{v}}(\mathrm{t})=\mathrm{A}[\cos (\mathrm{kt}) \overline{\mathrm{i}}-\sin (\mathrm{kt}) \overline{\mathrm{j}}]$. Then the angle
between the force and the velocity of the particle is (Here $A$ and $k$ are constants)

1 $90^{\circ}$
2 $0^{\circ}$
3 $180^{\circ}$
4 $45^{\circ}$
WAVES

172207 The path difference between the two waves represented by $x_{1}=4 \sin \left(\omega t-\frac{2 \pi x}{\lambda}\right)$ and $x_{2}=3 \cos \left(\omega t-\frac{2 \pi x}{\lambda}-\phi+\frac{\pi}{2}\right)$

1 $\frac{\lambda(2 \pi-\phi)}{4 \pi}$
2 $\frac{\lambda(\pi-2 \phi)}{2 \pi}$
3 $\frac{\lambda(\pi-\phi)}{4 \pi}$
4 $\frac{\lambda(\pi-2 \phi)}{4 \pi}$
WAVES

172159 A stationary wave is represented by $y=10 \sin \frac{\pi x}{4} \cos 20 \pi t$ where ' $x$ ' and ' $y$ ' are expressed in $\mathrm{cm}$ and ' $t$ ' in second. Distance between two consecutive nodes is

1 $1 \mathrm{~cm}$
2 $2 \mathrm{~cm}$
3 $4 \mathrm{~cm}$
4 $8 \mathrm{~cm}$
WAVES

172205 A standing wave propagating with velocity 300 $\mathrm{m} / \mathrm{s}$ in an open pipe of length $4 \mathrm{~m}$ has four nodes. The frequency of the wave is

1 $75 \mathrm{~Hz}$
2 $100 \mathrm{~Hz}$
3 $150 \mathrm{~Hz}$
4 $300 \mathrm{~Hz}$
5 $600 \mathrm{~Hz}$
WAVES

172206 The velocity $\vec{v}$ of a particle of mass ' $m$ ' acted upon by a constant force is given by $\overrightarrow{\mathrm{v}}(\mathrm{t})=\mathrm{A}[\cos (\mathrm{kt}) \overline{\mathrm{i}}-\sin (\mathrm{kt}) \overline{\mathrm{j}}]$. Then the angle
between the force and the velocity of the particle is (Here $A$ and $k$ are constants)

1 $90^{\circ}$
2 $0^{\circ}$
3 $180^{\circ}$
4 $45^{\circ}$
WAVES

172207 The path difference between the two waves represented by $x_{1}=4 \sin \left(\omega t-\frac{2 \pi x}{\lambda}\right)$ and $x_{2}=3 \cos \left(\omega t-\frac{2 \pi x}{\lambda}-\phi+\frac{\pi}{2}\right)$

1 $\frac{\lambda(2 \pi-\phi)}{4 \pi}$
2 $\frac{\lambda(\pi-2 \phi)}{2 \pi}$
3 $\frac{\lambda(\pi-\phi)}{4 \pi}$
4 $\frac{\lambda(\pi-2 \phi)}{4 \pi}$
WAVES

172159 A stationary wave is represented by $y=10 \sin \frac{\pi x}{4} \cos 20 \pi t$ where ' $x$ ' and ' $y$ ' are expressed in $\mathrm{cm}$ and ' $t$ ' in second. Distance between two consecutive nodes is

1 $1 \mathrm{~cm}$
2 $2 \mathrm{~cm}$
3 $4 \mathrm{~cm}$
4 $8 \mathrm{~cm}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
WAVES

172205 A standing wave propagating with velocity 300 $\mathrm{m} / \mathrm{s}$ in an open pipe of length $4 \mathrm{~m}$ has four nodes. The frequency of the wave is

1 $75 \mathrm{~Hz}$
2 $100 \mathrm{~Hz}$
3 $150 \mathrm{~Hz}$
4 $300 \mathrm{~Hz}$
5 $600 \mathrm{~Hz}$
WAVES

172206 The velocity $\vec{v}$ of a particle of mass ' $m$ ' acted upon by a constant force is given by $\overrightarrow{\mathrm{v}}(\mathrm{t})=\mathrm{A}[\cos (\mathrm{kt}) \overline{\mathrm{i}}-\sin (\mathrm{kt}) \overline{\mathrm{j}}]$. Then the angle
between the force and the velocity of the particle is (Here $A$ and $k$ are constants)

1 $90^{\circ}$
2 $0^{\circ}$
3 $180^{\circ}$
4 $45^{\circ}$
WAVES

172207 The path difference between the two waves represented by $x_{1}=4 \sin \left(\omega t-\frac{2 \pi x}{\lambda}\right)$ and $x_{2}=3 \cos \left(\omega t-\frac{2 \pi x}{\lambda}-\phi+\frac{\pi}{2}\right)$

1 $\frac{\lambda(2 \pi-\phi)}{4 \pi}$
2 $\frac{\lambda(\pi-2 \phi)}{2 \pi}$
3 $\frac{\lambda(\pi-\phi)}{4 \pi}$
4 $\frac{\lambda(\pi-2 \phi)}{4 \pi}$
WAVES

172159 A stationary wave is represented by $y=10 \sin \frac{\pi x}{4} \cos 20 \pi t$ where ' $x$ ' and ' $y$ ' are expressed in $\mathrm{cm}$ and ' $t$ ' in second. Distance between two consecutive nodes is

1 $1 \mathrm{~cm}$
2 $2 \mathrm{~cm}$
3 $4 \mathrm{~cm}$
4 $8 \mathrm{~cm}$
WAVES

172205 A standing wave propagating with velocity 300 $\mathrm{m} / \mathrm{s}$ in an open pipe of length $4 \mathrm{~m}$ has four nodes. The frequency of the wave is

1 $75 \mathrm{~Hz}$
2 $100 \mathrm{~Hz}$
3 $150 \mathrm{~Hz}$
4 $300 \mathrm{~Hz}$
5 $600 \mathrm{~Hz}$
WAVES

172206 The velocity $\vec{v}$ of a particle of mass ' $m$ ' acted upon by a constant force is given by $\overrightarrow{\mathrm{v}}(\mathrm{t})=\mathrm{A}[\cos (\mathrm{kt}) \overline{\mathrm{i}}-\sin (\mathrm{kt}) \overline{\mathrm{j}}]$. Then the angle
between the force and the velocity of the particle is (Here $A$ and $k$ are constants)

1 $90^{\circ}$
2 $0^{\circ}$
3 $180^{\circ}$
4 $45^{\circ}$
WAVES

172207 The path difference between the two waves represented by $x_{1}=4 \sin \left(\omega t-\frac{2 \pi x}{\lambda}\right)$ and $x_{2}=3 \cos \left(\omega t-\frac{2 \pi x}{\lambda}-\phi+\frac{\pi}{2}\right)$

1 $\frac{\lambda(2 \pi-\phi)}{4 \pi}$
2 $\frac{\lambda(\pi-2 \phi)}{2 \pi}$
3 $\frac{\lambda(\pi-\phi)}{4 \pi}$
4 $\frac{\lambda(\pi-2 \phi)}{4 \pi}$
WAVES

172159 A stationary wave is represented by $y=10 \sin \frac{\pi x}{4} \cos 20 \pi t$ where ' $x$ ' and ' $y$ ' are expressed in $\mathrm{cm}$ and ' $t$ ' in second. Distance between two consecutive nodes is

1 $1 \mathrm{~cm}$
2 $2 \mathrm{~cm}$
3 $4 \mathrm{~cm}$
4 $8 \mathrm{~cm}$