172160 A given metal wire has length $1 \mathrm{~m}$, linear density $0.6 \mathrm{~kg} / \mathrm{m}$ and uniform cross-sectional area $10^{-7} \mathrm{~m}^{2}$ is fixed at both ends. The temperature of wire is decreased by $40^{\circ} \mathrm{C}$. The fundamental frequency of the transverse wave is $Y=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$, coefficient of linear expansion of metal is $=1.2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
172165
Match the following
| Column-I | Column-II |
| :--- | :--- |
| (A) Transverse wave
through a steel rod | (i) $\sqrt{B+\left(\frac{4}{3}\right) \underline{\eta}}$ |
| (B) Longitudinal waves in
earth's crust | (ii) $\sqrt{\frac{\eta}{\rho}}$ |
| (C) Longitudinal waves
through a steel rod | (iii) $\sqrt{\frac{2 \pi T}{g \lambda}}$ |
| (D) Ripples | (iv) $\sqrt{\frac{\lambda}{\rho}}$ |
172160 A given metal wire has length $1 \mathrm{~m}$, linear density $0.6 \mathrm{~kg} / \mathrm{m}$ and uniform cross-sectional area $10^{-7} \mathrm{~m}^{2}$ is fixed at both ends. The temperature of wire is decreased by $40^{\circ} \mathrm{C}$. The fundamental frequency of the transverse wave is $Y=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$, coefficient of linear expansion of metal is $=1.2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
172165
Match the following
| Column-I | Column-II |
| :--- | :--- |
| (A) Transverse wave
through a steel rod | (i) $\sqrt{B+\left(\frac{4}{3}\right) \underline{\eta}}$ |
| (B) Longitudinal waves in
earth's crust | (ii) $\sqrt{\frac{\eta}{\rho}}$ |
| (C) Longitudinal waves
through a steel rod | (iii) $\sqrt{\frac{2 \pi T}{g \lambda}}$ |
| (D) Ripples | (iv) $\sqrt{\frac{\lambda}{\rho}}$ |
172160 A given metal wire has length $1 \mathrm{~m}$, linear density $0.6 \mathrm{~kg} / \mathrm{m}$ and uniform cross-sectional area $10^{-7} \mathrm{~m}^{2}$ is fixed at both ends. The temperature of wire is decreased by $40^{\circ} \mathrm{C}$. The fundamental frequency of the transverse wave is $Y=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$, coefficient of linear expansion of metal is $=1.2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
172165
Match the following
| Column-I | Column-II |
| :--- | :--- |
| (A) Transverse wave
through a steel rod | (i) $\sqrt{B+\left(\frac{4}{3}\right) \underline{\eta}}$ |
| (B) Longitudinal waves in
earth's crust | (ii) $\sqrt{\frac{\eta}{\rho}}$ |
| (C) Longitudinal waves
through a steel rod | (iii) $\sqrt{\frac{2 \pi T}{g \lambda}}$ |
| (D) Ripples | (iv) $\sqrt{\frac{\lambda}{\rho}}$ |
172160 A given metal wire has length $1 \mathrm{~m}$, linear density $0.6 \mathrm{~kg} / \mathrm{m}$ and uniform cross-sectional area $10^{-7} \mathrm{~m}^{2}$ is fixed at both ends. The temperature of wire is decreased by $40^{\circ} \mathrm{C}$. The fundamental frequency of the transverse wave is $Y=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$, coefficient of linear expansion of metal is $=1.2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
172165
Match the following
| Column-I | Column-II |
| :--- | :--- |
| (A) Transverse wave
through a steel rod | (i) $\sqrt{B+\left(\frac{4}{3}\right) \underline{\eta}}$ |
| (B) Longitudinal waves in
earth's crust | (ii) $\sqrt{\frac{\eta}{\rho}}$ |
| (C) Longitudinal waves
through a steel rod | (iii) $\sqrt{\frac{2 \pi T}{g \lambda}}$ |
| (D) Ripples | (iv) $\sqrt{\frac{\lambda}{\rho}}$ |