Specific heats of gases
Kinetic Theory of Gases

139359 One mole of an ideal gas requires $207 \mathrm{~J}$ heat to raise the temperature by $10 \mathrm{~K}$ when heated at constant pressure. If the same gas is heated at constant volume to raise the temperature by the same $10 \mathrm{~K}$, the heat required is (Given the gas constant $R=8.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K})$

1 $198.7 \mathrm{~J}$
2 $29 \mathrm{~J}$
3 $215.3 \mathrm{~J}$
4 $124 \mathrm{~J}$
Kinetic Theory of Gases

139360 For a certain gas the ratio of specific heats is given to be $\gamma=1.5$, for this gas

1 $\mathrm{C}_{\mathrm{v}}=\frac{3 \mathrm{R}}{\mathrm{J}}$
2 $\mathrm{C}_{\mathrm{p}}=\frac{3 \mathrm{R}}{\mathrm{J}}$
3 $\mathrm{C}_{\mathrm{p}}=\frac{5 \mathrm{R}}{\mathrm{J}}$
4 $\mathrm{C}_{\mathrm{p}}=\frac{5 \mathrm{R}}{\mathrm{J}}$
Kinetic Theory of Gases

139361 For hydrogen gas $C_{p}-C_{v}=a$ and for oxygen gas $C_{p}-C_{v}=b$, so the relation between a and $b$ is given by

1 $a=16 b$
2 $16 \mathrm{~b}=\mathrm{a}$
3 $\mathrm{a}=4 \mathrm{~b}$
4 $a=b$
Kinetic Theory of Gases

139362 The molar specific heats of an ideal gas at constant pressure and volume are denoted by $C_{p}$ and $C_{V}$ respectively. If $\gamma=\frac{C_{p}}{C_{v}}$ and $R$ is the universal gas constant, then $C_{V}$ is equal to

1 $\frac{1+\gamma}{1-\gamma}$
2 $\frac{\mathrm{R}}{(\gamma-1)}$
3 $\frac{(\gamma-1)}{\mathrm{R}}$
4 $\gamma \mathrm{R}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139359 One mole of an ideal gas requires $207 \mathrm{~J}$ heat to raise the temperature by $10 \mathrm{~K}$ when heated at constant pressure. If the same gas is heated at constant volume to raise the temperature by the same $10 \mathrm{~K}$, the heat required is (Given the gas constant $R=8.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K})$

1 $198.7 \mathrm{~J}$
2 $29 \mathrm{~J}$
3 $215.3 \mathrm{~J}$
4 $124 \mathrm{~J}$
Kinetic Theory of Gases

139360 For a certain gas the ratio of specific heats is given to be $\gamma=1.5$, for this gas

1 $\mathrm{C}_{\mathrm{v}}=\frac{3 \mathrm{R}}{\mathrm{J}}$
2 $\mathrm{C}_{\mathrm{p}}=\frac{3 \mathrm{R}}{\mathrm{J}}$
3 $\mathrm{C}_{\mathrm{p}}=\frac{5 \mathrm{R}}{\mathrm{J}}$
4 $\mathrm{C}_{\mathrm{p}}=\frac{5 \mathrm{R}}{\mathrm{J}}$
Kinetic Theory of Gases

139361 For hydrogen gas $C_{p}-C_{v}=a$ and for oxygen gas $C_{p}-C_{v}=b$, so the relation between a and $b$ is given by

1 $a=16 b$
2 $16 \mathrm{~b}=\mathrm{a}$
3 $\mathrm{a}=4 \mathrm{~b}$
4 $a=b$
Kinetic Theory of Gases

139362 The molar specific heats of an ideal gas at constant pressure and volume are denoted by $C_{p}$ and $C_{V}$ respectively. If $\gamma=\frac{C_{p}}{C_{v}}$ and $R$ is the universal gas constant, then $C_{V}$ is equal to

1 $\frac{1+\gamma}{1-\gamma}$
2 $\frac{\mathrm{R}}{(\gamma-1)}$
3 $\frac{(\gamma-1)}{\mathrm{R}}$
4 $\gamma \mathrm{R}$
Kinetic Theory of Gases

139359 One mole of an ideal gas requires $207 \mathrm{~J}$ heat to raise the temperature by $10 \mathrm{~K}$ when heated at constant pressure. If the same gas is heated at constant volume to raise the temperature by the same $10 \mathrm{~K}$, the heat required is (Given the gas constant $R=8.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K})$

1 $198.7 \mathrm{~J}$
2 $29 \mathrm{~J}$
3 $215.3 \mathrm{~J}$
4 $124 \mathrm{~J}$
Kinetic Theory of Gases

139360 For a certain gas the ratio of specific heats is given to be $\gamma=1.5$, for this gas

1 $\mathrm{C}_{\mathrm{v}}=\frac{3 \mathrm{R}}{\mathrm{J}}$
2 $\mathrm{C}_{\mathrm{p}}=\frac{3 \mathrm{R}}{\mathrm{J}}$
3 $\mathrm{C}_{\mathrm{p}}=\frac{5 \mathrm{R}}{\mathrm{J}}$
4 $\mathrm{C}_{\mathrm{p}}=\frac{5 \mathrm{R}}{\mathrm{J}}$
Kinetic Theory of Gases

139361 For hydrogen gas $C_{p}-C_{v}=a$ and for oxygen gas $C_{p}-C_{v}=b$, so the relation between a and $b$ is given by

1 $a=16 b$
2 $16 \mathrm{~b}=\mathrm{a}$
3 $\mathrm{a}=4 \mathrm{~b}$
4 $a=b$
Kinetic Theory of Gases

139362 The molar specific heats of an ideal gas at constant pressure and volume are denoted by $C_{p}$ and $C_{V}$ respectively. If $\gamma=\frac{C_{p}}{C_{v}}$ and $R$ is the universal gas constant, then $C_{V}$ is equal to

1 $\frac{1+\gamma}{1-\gamma}$
2 $\frac{\mathrm{R}}{(\gamma-1)}$
3 $\frac{(\gamma-1)}{\mathrm{R}}$
4 $\gamma \mathrm{R}$
Kinetic Theory of Gases

139359 One mole of an ideal gas requires $207 \mathrm{~J}$ heat to raise the temperature by $10 \mathrm{~K}$ when heated at constant pressure. If the same gas is heated at constant volume to raise the temperature by the same $10 \mathrm{~K}$, the heat required is (Given the gas constant $R=8.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K})$

1 $198.7 \mathrm{~J}$
2 $29 \mathrm{~J}$
3 $215.3 \mathrm{~J}$
4 $124 \mathrm{~J}$
Kinetic Theory of Gases

139360 For a certain gas the ratio of specific heats is given to be $\gamma=1.5$, for this gas

1 $\mathrm{C}_{\mathrm{v}}=\frac{3 \mathrm{R}}{\mathrm{J}}$
2 $\mathrm{C}_{\mathrm{p}}=\frac{3 \mathrm{R}}{\mathrm{J}}$
3 $\mathrm{C}_{\mathrm{p}}=\frac{5 \mathrm{R}}{\mathrm{J}}$
4 $\mathrm{C}_{\mathrm{p}}=\frac{5 \mathrm{R}}{\mathrm{J}}$
Kinetic Theory of Gases

139361 For hydrogen gas $C_{p}-C_{v}=a$ and for oxygen gas $C_{p}-C_{v}=b$, so the relation between a and $b$ is given by

1 $a=16 b$
2 $16 \mathrm{~b}=\mathrm{a}$
3 $\mathrm{a}=4 \mathrm{~b}$
4 $a=b$
Kinetic Theory of Gases

139362 The molar specific heats of an ideal gas at constant pressure and volume are denoted by $C_{p}$ and $C_{V}$ respectively. If $\gamma=\frac{C_{p}}{C_{v}}$ and $R$ is the universal gas constant, then $C_{V}$ is equal to

1 $\frac{1+\gamma}{1-\gamma}$
2 $\frac{\mathrm{R}}{(\gamma-1)}$
3 $\frac{(\gamma-1)}{\mathrm{R}}$
4 $\gamma \mathrm{R}$