Specific heats of gases
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139363 At $10^{\circ} \mathrm{C}$ the value of the density of a fixed mass of an ideal gas divided by its pressure is $x$. At $110^{\circ} \mathrm{C}$ this ratio is

1 $x$
2 $\frac{383}{283} \mathrm{x}$
3 $\frac{10}{110} \mathrm{x}$
4 $\frac{283}{383} \mathrm{x}$
Kinetic Theory of Gases

139364 The molar specific heat at constant pressure of an ideal gas is $(7 / 2) R$. The ratio of specific heat at constant pressure to that at constant volume is

1 $7 / 5$
2 $8 / 7$
3 $5 / 7$
4 $9 / 7$
Kinetic Theory of Gases

139365 4.0 $\mathrm{g}$ of a gas occupies $22.4 \mathrm{~L}$ at NTP. The specific heat capacity of the gas at constant volume is $5.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. If the speed of sound in this gas at NTP is $952 \mathrm{~ms}^{-1}$, then the heat capacity at constant pressure is (Take gas constant $\mathbf{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ )

1 $8.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2 $7.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3 $7.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4 $8.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Kinetic Theory of Gases

139366 If the ratio of specific heat of a gas at constant pressure to that at constant volume is $\gamma$, the change in internal energy of a mass of gas when the volume changes from $V$ to $2 V$ at constant pressure $p$ is

1 $\frac{\mathrm{R}}{(\gamma-1)}$
2 $\mathrm{pV}$
3 $\frac{\mathrm{pV}}{(\gamma-1)}$
4 $\frac{\gamma \mathrm{pV}}{(\gamma-1)}$
Kinetic Theory of Gases

139363 At $10^{\circ} \mathrm{C}$ the value of the density of a fixed mass of an ideal gas divided by its pressure is $x$. At $110^{\circ} \mathrm{C}$ this ratio is

1 $x$
2 $\frac{383}{283} \mathrm{x}$
3 $\frac{10}{110} \mathrm{x}$
4 $\frac{283}{383} \mathrm{x}$
Kinetic Theory of Gases

139364 The molar specific heat at constant pressure of an ideal gas is $(7 / 2) R$. The ratio of specific heat at constant pressure to that at constant volume is

1 $7 / 5$
2 $8 / 7$
3 $5 / 7$
4 $9 / 7$
Kinetic Theory of Gases

139365 4.0 $\mathrm{g}$ of a gas occupies $22.4 \mathrm{~L}$ at NTP. The specific heat capacity of the gas at constant volume is $5.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. If the speed of sound in this gas at NTP is $952 \mathrm{~ms}^{-1}$, then the heat capacity at constant pressure is (Take gas constant $\mathbf{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ )

1 $8.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2 $7.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3 $7.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4 $8.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Kinetic Theory of Gases

139366 If the ratio of specific heat of a gas at constant pressure to that at constant volume is $\gamma$, the change in internal energy of a mass of gas when the volume changes from $V$ to $2 V$ at constant pressure $p$ is

1 $\frac{\mathrm{R}}{(\gamma-1)}$
2 $\mathrm{pV}$
3 $\frac{\mathrm{pV}}{(\gamma-1)}$
4 $\frac{\gamma \mathrm{pV}}{(\gamma-1)}$
Kinetic Theory of Gases

139363 At $10^{\circ} \mathrm{C}$ the value of the density of a fixed mass of an ideal gas divided by its pressure is $x$. At $110^{\circ} \mathrm{C}$ this ratio is

1 $x$
2 $\frac{383}{283} \mathrm{x}$
3 $\frac{10}{110} \mathrm{x}$
4 $\frac{283}{383} \mathrm{x}$
Kinetic Theory of Gases

139364 The molar specific heat at constant pressure of an ideal gas is $(7 / 2) R$. The ratio of specific heat at constant pressure to that at constant volume is

1 $7 / 5$
2 $8 / 7$
3 $5 / 7$
4 $9 / 7$
Kinetic Theory of Gases

139365 4.0 $\mathrm{g}$ of a gas occupies $22.4 \mathrm{~L}$ at NTP. The specific heat capacity of the gas at constant volume is $5.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. If the speed of sound in this gas at NTP is $952 \mathrm{~ms}^{-1}$, then the heat capacity at constant pressure is (Take gas constant $\mathbf{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ )

1 $8.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2 $7.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3 $7.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4 $8.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Kinetic Theory of Gases

139366 If the ratio of specific heat of a gas at constant pressure to that at constant volume is $\gamma$, the change in internal energy of a mass of gas when the volume changes from $V$ to $2 V$ at constant pressure $p$ is

1 $\frac{\mathrm{R}}{(\gamma-1)}$
2 $\mathrm{pV}$
3 $\frac{\mathrm{pV}}{(\gamma-1)}$
4 $\frac{\gamma \mathrm{pV}}{(\gamma-1)}$
Kinetic Theory of Gases

139363 At $10^{\circ} \mathrm{C}$ the value of the density of a fixed mass of an ideal gas divided by its pressure is $x$. At $110^{\circ} \mathrm{C}$ this ratio is

1 $x$
2 $\frac{383}{283} \mathrm{x}$
3 $\frac{10}{110} \mathrm{x}$
4 $\frac{283}{383} \mathrm{x}$
Kinetic Theory of Gases

139364 The molar specific heat at constant pressure of an ideal gas is $(7 / 2) R$. The ratio of specific heat at constant pressure to that at constant volume is

1 $7 / 5$
2 $8 / 7$
3 $5 / 7$
4 $9 / 7$
Kinetic Theory of Gases

139365 4.0 $\mathrm{g}$ of a gas occupies $22.4 \mathrm{~L}$ at NTP. The specific heat capacity of the gas at constant volume is $5.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. If the speed of sound in this gas at NTP is $952 \mathrm{~ms}^{-1}$, then the heat capacity at constant pressure is (Take gas constant $\mathbf{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ )

1 $8.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2 $7.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3 $7.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4 $8.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Kinetic Theory of Gases

139366 If the ratio of specific heat of a gas at constant pressure to that at constant volume is $\gamma$, the change in internal energy of a mass of gas when the volume changes from $V$ to $2 V$ at constant pressure $p$ is

1 $\frac{\mathrm{R}}{(\gamma-1)}$
2 $\mathrm{pV}$
3 $\frac{\mathrm{pV}}{(\gamma-1)}$
4 $\frac{\gamma \mathrm{pV}}{(\gamma-1)}$