139365 4.0 $\mathrm{g}$ of a gas occupies $22.4 \mathrm{~L}$ at NTP. The specific heat capacity of the gas at constant volume is $5.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. If the speed of sound in this gas at NTP is $952 \mathrm{~ms}^{-1}$, then the heat capacity at constant pressure is (Take gas constant $\mathbf{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ )
139365 4.0 $\mathrm{g}$ of a gas occupies $22.4 \mathrm{~L}$ at NTP. The specific heat capacity of the gas at constant volume is $5.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. If the speed of sound in this gas at NTP is $952 \mathrm{~ms}^{-1}$, then the heat capacity at constant pressure is (Take gas constant $\mathbf{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ )
139365 4.0 $\mathrm{g}$ of a gas occupies $22.4 \mathrm{~L}$ at NTP. The specific heat capacity of the gas at constant volume is $5.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. If the speed of sound in this gas at NTP is $952 \mathrm{~ms}^{-1}$, then the heat capacity at constant pressure is (Take gas constant $\mathbf{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ )
139365 4.0 $\mathrm{g}$ of a gas occupies $22.4 \mathrm{~L}$ at NTP. The specific heat capacity of the gas at constant volume is $5.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. If the speed of sound in this gas at NTP is $952 \mathrm{~ms}^{-1}$, then the heat capacity at constant pressure is (Take gas constant $\mathbf{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ )