Specific heats of gases
Kinetic Theory of Gases

139354 The specific heat of helium at constant volume is $12.6 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. The specific heat of helium at constant pressure in $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ is about ( Assume the temperature of the gas is moderate, universal gas constant, $R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ )

1 12.6
2 16.8
3 18.9
4 21
Kinetic Theory of Gases

139355 When two moles of oxygen is heated from $0^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$ at constant volume, its internal energy changes by $420 \mathrm{~J}$. What is the molar specific heat of oxygen at constant volume?

1 $5.75 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2 $10.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3 $21 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4 $42 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Kinetic Theory of Gases

139356 If for a gas, $\frac{R}{C_{v}}=0.67$, this gas is made up of molecules which are,

1 diatomic
2 mixture of diatomic and polyatomic molecules
3 Monoatomic
4 Polyatomic
Kinetic Theory of Gases

139357 One mole of an ideal monatomic gas undergoes a process described by the equation $\mathrm{PV}^{3}=$ constant. The heat capacity of the gas during this process is

1 $\frac{3}{2} \mathrm{R}$
2 $\frac{5}{2} \mathrm{R}$
3 $2 \mathrm{R}$
4 $\mathrm{R}$
Kinetic Theory of Gases

139358 The amount of heat energy required to raise the temperature of $1 \mathrm{~g}$ of helium at NTP, from $T_{1} K$ to $T_{2} K$ is

1 $\frac{3}{8} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
2 $\frac{3}{2} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
3 $\frac{3}{4} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
4 $\frac{3}{4} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)$
Kinetic Theory of Gases

139354 The specific heat of helium at constant volume is $12.6 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. The specific heat of helium at constant pressure in $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ is about ( Assume the temperature of the gas is moderate, universal gas constant, $R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ )

1 12.6
2 16.8
3 18.9
4 21
Kinetic Theory of Gases

139355 When two moles of oxygen is heated from $0^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$ at constant volume, its internal energy changes by $420 \mathrm{~J}$. What is the molar specific heat of oxygen at constant volume?

1 $5.75 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2 $10.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3 $21 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4 $42 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Kinetic Theory of Gases

139356 If for a gas, $\frac{R}{C_{v}}=0.67$, this gas is made up of molecules which are,

1 diatomic
2 mixture of diatomic and polyatomic molecules
3 Monoatomic
4 Polyatomic
Kinetic Theory of Gases

139357 One mole of an ideal monatomic gas undergoes a process described by the equation $\mathrm{PV}^{3}=$ constant. The heat capacity of the gas during this process is

1 $\frac{3}{2} \mathrm{R}$
2 $\frac{5}{2} \mathrm{R}$
3 $2 \mathrm{R}$
4 $\mathrm{R}$
Kinetic Theory of Gases

139358 The amount of heat energy required to raise the temperature of $1 \mathrm{~g}$ of helium at NTP, from $T_{1} K$ to $T_{2} K$ is

1 $\frac{3}{8} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
2 $\frac{3}{2} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
3 $\frac{3}{4} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
4 $\frac{3}{4} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)$
Kinetic Theory of Gases

139354 The specific heat of helium at constant volume is $12.6 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. The specific heat of helium at constant pressure in $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ is about ( Assume the temperature of the gas is moderate, universal gas constant, $R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ )

1 12.6
2 16.8
3 18.9
4 21
Kinetic Theory of Gases

139355 When two moles of oxygen is heated from $0^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$ at constant volume, its internal energy changes by $420 \mathrm{~J}$. What is the molar specific heat of oxygen at constant volume?

1 $5.75 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2 $10.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3 $21 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4 $42 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Kinetic Theory of Gases

139356 If for a gas, $\frac{R}{C_{v}}=0.67$, this gas is made up of molecules which are,

1 diatomic
2 mixture of diatomic and polyatomic molecules
3 Monoatomic
4 Polyatomic
Kinetic Theory of Gases

139357 One mole of an ideal monatomic gas undergoes a process described by the equation $\mathrm{PV}^{3}=$ constant. The heat capacity of the gas during this process is

1 $\frac{3}{2} \mathrm{R}$
2 $\frac{5}{2} \mathrm{R}$
3 $2 \mathrm{R}$
4 $\mathrm{R}$
Kinetic Theory of Gases

139358 The amount of heat energy required to raise the temperature of $1 \mathrm{~g}$ of helium at NTP, from $T_{1} K$ to $T_{2} K$ is

1 $\frac{3}{8} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
2 $\frac{3}{2} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
3 $\frac{3}{4} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
4 $\frac{3}{4} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)$
Kinetic Theory of Gases

139354 The specific heat of helium at constant volume is $12.6 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. The specific heat of helium at constant pressure in $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ is about ( Assume the temperature of the gas is moderate, universal gas constant, $R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ )

1 12.6
2 16.8
3 18.9
4 21
Kinetic Theory of Gases

139355 When two moles of oxygen is heated from $0^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$ at constant volume, its internal energy changes by $420 \mathrm{~J}$. What is the molar specific heat of oxygen at constant volume?

1 $5.75 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2 $10.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3 $21 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4 $42 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Kinetic Theory of Gases

139356 If for a gas, $\frac{R}{C_{v}}=0.67$, this gas is made up of molecules which are,

1 diatomic
2 mixture of diatomic and polyatomic molecules
3 Monoatomic
4 Polyatomic
Kinetic Theory of Gases

139357 One mole of an ideal monatomic gas undergoes a process described by the equation $\mathrm{PV}^{3}=$ constant. The heat capacity of the gas during this process is

1 $\frac{3}{2} \mathrm{R}$
2 $\frac{5}{2} \mathrm{R}$
3 $2 \mathrm{R}$
4 $\mathrm{R}$
Kinetic Theory of Gases

139358 The amount of heat energy required to raise the temperature of $1 \mathrm{~g}$ of helium at NTP, from $T_{1} K$ to $T_{2} K$ is

1 $\frac{3}{8} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
2 $\frac{3}{2} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
3 $\frac{3}{4} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
4 $\frac{3}{4} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)$
Kinetic Theory of Gases

139354 The specific heat of helium at constant volume is $12.6 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. The specific heat of helium at constant pressure in $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ is about ( Assume the temperature of the gas is moderate, universal gas constant, $R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ )

1 12.6
2 16.8
3 18.9
4 21
Kinetic Theory of Gases

139355 When two moles of oxygen is heated from $0^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$ at constant volume, its internal energy changes by $420 \mathrm{~J}$. What is the molar specific heat of oxygen at constant volume?

1 $5.75 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2 $10.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3 $21 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4 $42 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Kinetic Theory of Gases

139356 If for a gas, $\frac{R}{C_{v}}=0.67$, this gas is made up of molecules which are,

1 diatomic
2 mixture of diatomic and polyatomic molecules
3 Monoatomic
4 Polyatomic
Kinetic Theory of Gases

139357 One mole of an ideal monatomic gas undergoes a process described by the equation $\mathrm{PV}^{3}=$ constant. The heat capacity of the gas during this process is

1 $\frac{3}{2} \mathrm{R}$
2 $\frac{5}{2} \mathrm{R}$
3 $2 \mathrm{R}$
4 $\mathrm{R}$
Kinetic Theory of Gases

139358 The amount of heat energy required to raise the temperature of $1 \mathrm{~g}$ of helium at NTP, from $T_{1} K$ to $T_{2} K$ is

1 $\frac{3}{8} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
2 $\frac{3}{2} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
3 $\frac{3}{4} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
4 $\frac{3}{4} \mathrm{~N}_{\mathrm{a}} \mathrm{K}_{\mathrm{B}}\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)$