Specific heats of gases
Kinetic Theory of Gases

139347 The specific heat at constant volume for the monoatomic argon is $0.075 \mathrm{kcal} / \mathrm{kg}-\mathrm{K}$, whereas its gram molecular specific heat is $C_{V}=\mathbf{2 . 9 8}$ $\mathrm{cal} / \mathrm{mol} \mathrm{K}$. The mass of the carbon atom is

1 $6.60 \times 10^{-23} \mathrm{~g}$
2 $3.30 \times 10^{-23} \mathrm{~g}$
3 $2.20 \times 10^{-23} \mathrm{~g}$
4 $13.20 \times 10^{-23} \mathrm{~g}$
Kinetic Theory of Gases

139348 Assuming $\mathrm{R}=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ and $\gamma=1.4$ the values of $C_{P}$ and $C_{v}$ of gas are

1 $29.05 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, 20.75 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
2 $20.75 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, 29.05 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
3 $16.60 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, 8.300 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
4 $8.300 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, 16.60 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Kinetic Theory of Gases

139352 One mole of a monoatomic ideal gas undergoes the process $A \rightarrow B$ in the given $p-V$ diagram. The molar heat capacity for this process is

1 $\frac{3 R}{2}$
2 $\frac{13 R}{6}$
3 $\frac{5 R}{2}$
4 $2 \mathrm{R}$
Kinetic Theory of Gases

139353 3 moles of an ideal mono-atomic gas performs ABCDA cyclic process as shown in figure below. The gas temperature are $T_{A}=400 \mathrm{~K}, T_{B}$ $=800 \mathrm{~K}, T_{C}=2400 \mathrm{~K}$ and $T_{D}=1200 \mathrm{~K}$, work done by the gas is (approximately)
$(\mathrm{R}=\mathbf{8 . 3 1 4 \mathrm { J }} / \mathrm{mol} \mathrm{K})$

1 $10 \mathrm{~kJ}$
2 $20 \mathrm{~kJ}$
3 $40 \mathrm{~kJ}$
4 $100 \mathrm{~kJ}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139347 The specific heat at constant volume for the monoatomic argon is $0.075 \mathrm{kcal} / \mathrm{kg}-\mathrm{K}$, whereas its gram molecular specific heat is $C_{V}=\mathbf{2 . 9 8}$ $\mathrm{cal} / \mathrm{mol} \mathrm{K}$. The mass of the carbon atom is

1 $6.60 \times 10^{-23} \mathrm{~g}$
2 $3.30 \times 10^{-23} \mathrm{~g}$
3 $2.20 \times 10^{-23} \mathrm{~g}$
4 $13.20 \times 10^{-23} \mathrm{~g}$
Kinetic Theory of Gases

139348 Assuming $\mathrm{R}=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ and $\gamma=1.4$ the values of $C_{P}$ and $C_{v}$ of gas are

1 $29.05 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, 20.75 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
2 $20.75 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, 29.05 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
3 $16.60 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, 8.300 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
4 $8.300 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, 16.60 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Kinetic Theory of Gases

139352 One mole of a monoatomic ideal gas undergoes the process $A \rightarrow B$ in the given $p-V$ diagram. The molar heat capacity for this process is

1 $\frac{3 R}{2}$
2 $\frac{13 R}{6}$
3 $\frac{5 R}{2}$
4 $2 \mathrm{R}$
Kinetic Theory of Gases

139353 3 moles of an ideal mono-atomic gas performs ABCDA cyclic process as shown in figure below. The gas temperature are $T_{A}=400 \mathrm{~K}, T_{B}$ $=800 \mathrm{~K}, T_{C}=2400 \mathrm{~K}$ and $T_{D}=1200 \mathrm{~K}$, work done by the gas is (approximately)
$(\mathrm{R}=\mathbf{8 . 3 1 4 \mathrm { J }} / \mathrm{mol} \mathrm{K})$

1 $10 \mathrm{~kJ}$
2 $20 \mathrm{~kJ}$
3 $40 \mathrm{~kJ}$
4 $100 \mathrm{~kJ}$
Kinetic Theory of Gases

139347 The specific heat at constant volume for the monoatomic argon is $0.075 \mathrm{kcal} / \mathrm{kg}-\mathrm{K}$, whereas its gram molecular specific heat is $C_{V}=\mathbf{2 . 9 8}$ $\mathrm{cal} / \mathrm{mol} \mathrm{K}$. The mass of the carbon atom is

1 $6.60 \times 10^{-23} \mathrm{~g}$
2 $3.30 \times 10^{-23} \mathrm{~g}$
3 $2.20 \times 10^{-23} \mathrm{~g}$
4 $13.20 \times 10^{-23} \mathrm{~g}$
Kinetic Theory of Gases

139348 Assuming $\mathrm{R}=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ and $\gamma=1.4$ the values of $C_{P}$ and $C_{v}$ of gas are

1 $29.05 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, 20.75 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
2 $20.75 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, 29.05 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
3 $16.60 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, 8.300 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
4 $8.300 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, 16.60 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Kinetic Theory of Gases

139352 One mole of a monoatomic ideal gas undergoes the process $A \rightarrow B$ in the given $p-V$ diagram. The molar heat capacity for this process is

1 $\frac{3 R}{2}$
2 $\frac{13 R}{6}$
3 $\frac{5 R}{2}$
4 $2 \mathrm{R}$
Kinetic Theory of Gases

139353 3 moles of an ideal mono-atomic gas performs ABCDA cyclic process as shown in figure below. The gas temperature are $T_{A}=400 \mathrm{~K}, T_{B}$ $=800 \mathrm{~K}, T_{C}=2400 \mathrm{~K}$ and $T_{D}=1200 \mathrm{~K}$, work done by the gas is (approximately)
$(\mathrm{R}=\mathbf{8 . 3 1 4 \mathrm { J }} / \mathrm{mol} \mathrm{K})$

1 $10 \mathrm{~kJ}$
2 $20 \mathrm{~kJ}$
3 $40 \mathrm{~kJ}$
4 $100 \mathrm{~kJ}$
Kinetic Theory of Gases

139347 The specific heat at constant volume for the monoatomic argon is $0.075 \mathrm{kcal} / \mathrm{kg}-\mathrm{K}$, whereas its gram molecular specific heat is $C_{V}=\mathbf{2 . 9 8}$ $\mathrm{cal} / \mathrm{mol} \mathrm{K}$. The mass of the carbon atom is

1 $6.60 \times 10^{-23} \mathrm{~g}$
2 $3.30 \times 10^{-23} \mathrm{~g}$
3 $2.20 \times 10^{-23} \mathrm{~g}$
4 $13.20 \times 10^{-23} \mathrm{~g}$
Kinetic Theory of Gases

139348 Assuming $\mathrm{R}=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ and $\gamma=1.4$ the values of $C_{P}$ and $C_{v}$ of gas are

1 $29.05 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, 20.75 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
2 $20.75 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, 29.05 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
3 $16.60 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, 8.300 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
4 $8.300 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, 16.60 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Kinetic Theory of Gases

139352 One mole of a monoatomic ideal gas undergoes the process $A \rightarrow B$ in the given $p-V$ diagram. The molar heat capacity for this process is

1 $\frac{3 R}{2}$
2 $\frac{13 R}{6}$
3 $\frac{5 R}{2}$
4 $2 \mathrm{R}$
Kinetic Theory of Gases

139353 3 moles of an ideal mono-atomic gas performs ABCDA cyclic process as shown in figure below. The gas temperature are $T_{A}=400 \mathrm{~K}, T_{B}$ $=800 \mathrm{~K}, T_{C}=2400 \mathrm{~K}$ and $T_{D}=1200 \mathrm{~K}$, work done by the gas is (approximately)
$(\mathrm{R}=\mathbf{8 . 3 1 4 \mathrm { J }} / \mathrm{mol} \mathrm{K})$

1 $10 \mathrm{~kJ}$
2 $20 \mathrm{~kJ}$
3 $40 \mathrm{~kJ}$
4 $100 \mathrm{~kJ}$