Ideal Gas Equation and Vander Waal equation
Kinetic Theory of Gases

139066 The graph of pressure $P$ and $\left(\frac{1}{\text { Volume(V) }}\right)$ of 1 mole of an ideal gas at constant temperature is

1
2
3
4
Kinetic Theory of Gases

139067 The molecular weight of a gas is 44. The volume occupied by $2.2 \mathrm{~g}$ of this gas at $0^{\circ} \mathrm{C}$ and 2 atmospheric pressure will be

1 $2.8 \mathrm{~L}$
2 $0.56 \mathrm{~L}$
3 $5.6 \mathrm{~L}$
4 $44.8 \mathrm{~L}$
Kinetic Theory of Gases

139068 An ideal gas follows a process described by the equation $P V^{2}=C$ from the initial $\left(P_{1}, V_{1}, T_{1}\right)$ to final $\left(P_{2}, V_{2}, T_{2}\right)$ thermodynamics states, where $C$ is a constant. Then:

1 If $\mathrm{P}_{1}>\mathrm{P}_{2}$ then $\mathrm{T}_{1} \lt \mathrm{T}_{2}$
2 If $V_{2}>V_{1}$ then $T_{2}>T_{1}$
3 If $\mathrm{V}_{2}>\mathrm{V}_{1}$ then $\mathrm{T}_{2} \lt \mathrm{T}_{1}$
4 If $\mathrm{P}_{1}>\mathrm{P}_{2}$ then $\mathrm{T}_{1}>\mathrm{T}_{2}$
Kinetic Theory of Gases

139069 The volume occupied by the molecules contained in $4.5 \mathrm{~kg}$ water at STP, if the intermolecular forces vanish away is

1 $5.6 \times 10^{-3} \mathrm{~m}^{3}$
2 $5.6 \mathrm{~m}^{3}$
3 $5.6 \times 10^{6} \mathrm{~m}^{3}$
4 $5.6 \times 10^{3} \mathrm{~m}^{3}$
Kinetic Theory of Gases

139066 The graph of pressure $P$ and $\left(\frac{1}{\text { Volume(V) }}\right)$ of 1 mole of an ideal gas at constant temperature is

1
2
3
4
Kinetic Theory of Gases

139067 The molecular weight of a gas is 44. The volume occupied by $2.2 \mathrm{~g}$ of this gas at $0^{\circ} \mathrm{C}$ and 2 atmospheric pressure will be

1 $2.8 \mathrm{~L}$
2 $0.56 \mathrm{~L}$
3 $5.6 \mathrm{~L}$
4 $44.8 \mathrm{~L}$
Kinetic Theory of Gases

139068 An ideal gas follows a process described by the equation $P V^{2}=C$ from the initial $\left(P_{1}, V_{1}, T_{1}\right)$ to final $\left(P_{2}, V_{2}, T_{2}\right)$ thermodynamics states, where $C$ is a constant. Then:

1 If $\mathrm{P}_{1}>\mathrm{P}_{2}$ then $\mathrm{T}_{1} \lt \mathrm{T}_{2}$
2 If $V_{2}>V_{1}$ then $T_{2}>T_{1}$
3 If $\mathrm{V}_{2}>\mathrm{V}_{1}$ then $\mathrm{T}_{2} \lt \mathrm{T}_{1}$
4 If $\mathrm{P}_{1}>\mathrm{P}_{2}$ then $\mathrm{T}_{1}>\mathrm{T}_{2}$
Kinetic Theory of Gases

139069 The volume occupied by the molecules contained in $4.5 \mathrm{~kg}$ water at STP, if the intermolecular forces vanish away is

1 $5.6 \times 10^{-3} \mathrm{~m}^{3}$
2 $5.6 \mathrm{~m}^{3}$
3 $5.6 \times 10^{6} \mathrm{~m}^{3}$
4 $5.6 \times 10^{3} \mathrm{~m}^{3}$
Kinetic Theory of Gases

139066 The graph of pressure $P$ and $\left(\frac{1}{\text { Volume(V) }}\right)$ of 1 mole of an ideal gas at constant temperature is

1
2
3
4
Kinetic Theory of Gases

139067 The molecular weight of a gas is 44. The volume occupied by $2.2 \mathrm{~g}$ of this gas at $0^{\circ} \mathrm{C}$ and 2 atmospheric pressure will be

1 $2.8 \mathrm{~L}$
2 $0.56 \mathrm{~L}$
3 $5.6 \mathrm{~L}$
4 $44.8 \mathrm{~L}$
Kinetic Theory of Gases

139068 An ideal gas follows a process described by the equation $P V^{2}=C$ from the initial $\left(P_{1}, V_{1}, T_{1}\right)$ to final $\left(P_{2}, V_{2}, T_{2}\right)$ thermodynamics states, where $C$ is a constant. Then:

1 If $\mathrm{P}_{1}>\mathrm{P}_{2}$ then $\mathrm{T}_{1} \lt \mathrm{T}_{2}$
2 If $V_{2}>V_{1}$ then $T_{2}>T_{1}$
3 If $\mathrm{V}_{2}>\mathrm{V}_{1}$ then $\mathrm{T}_{2} \lt \mathrm{T}_{1}$
4 If $\mathrm{P}_{1}>\mathrm{P}_{2}$ then $\mathrm{T}_{1}>\mathrm{T}_{2}$
Kinetic Theory of Gases

139069 The volume occupied by the molecules contained in $4.5 \mathrm{~kg}$ water at STP, if the intermolecular forces vanish away is

1 $5.6 \times 10^{-3} \mathrm{~m}^{3}$
2 $5.6 \mathrm{~m}^{3}$
3 $5.6 \times 10^{6} \mathrm{~m}^{3}$
4 $5.6 \times 10^{3} \mathrm{~m}^{3}$
Kinetic Theory of Gases

139066 The graph of pressure $P$ and $\left(\frac{1}{\text { Volume(V) }}\right)$ of 1 mole of an ideal gas at constant temperature is

1
2
3
4
Kinetic Theory of Gases

139067 The molecular weight of a gas is 44. The volume occupied by $2.2 \mathrm{~g}$ of this gas at $0^{\circ} \mathrm{C}$ and 2 atmospheric pressure will be

1 $2.8 \mathrm{~L}$
2 $0.56 \mathrm{~L}$
3 $5.6 \mathrm{~L}$
4 $44.8 \mathrm{~L}$
Kinetic Theory of Gases

139068 An ideal gas follows a process described by the equation $P V^{2}=C$ from the initial $\left(P_{1}, V_{1}, T_{1}\right)$ to final $\left(P_{2}, V_{2}, T_{2}\right)$ thermodynamics states, where $C$ is a constant. Then:

1 If $\mathrm{P}_{1}>\mathrm{P}_{2}$ then $\mathrm{T}_{1} \lt \mathrm{T}_{2}$
2 If $V_{2}>V_{1}$ then $T_{2}>T_{1}$
3 If $\mathrm{V}_{2}>\mathrm{V}_{1}$ then $\mathrm{T}_{2} \lt \mathrm{T}_{1}$
4 If $\mathrm{P}_{1}>\mathrm{P}_{2}$ then $\mathrm{T}_{1}>\mathrm{T}_{2}$
Kinetic Theory of Gases

139069 The volume occupied by the molecules contained in $4.5 \mathrm{~kg}$ water at STP, if the intermolecular forces vanish away is

1 $5.6 \times 10^{-3} \mathrm{~m}^{3}$
2 $5.6 \mathrm{~m}^{3}$
3 $5.6 \times 10^{6} \mathrm{~m}^{3}$
4 $5.6 \times 10^{3} \mathrm{~m}^{3}$