Ideal Gas Equation and Vander Waal equation
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139060 One mole of a van der Waal's gas obeying the equation
$\left(\mathbf{p}+\frac{a}{\mathbf{V}^{2}}\right)(\mathbf{V}-\mathbf{b})=\mathbf{R T}$
undergoes the quasi-static cyclic process which is shown in the $\mathrm{p}-\mathrm{V}$ diagram. The net heat absorbed by the gas in this process is

1 $\frac{1}{2}\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
2 $\frac{1}{2}\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right)\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
3 $\frac{1}{2}\left(\mathrm{p}_{1}+\frac{\mathrm{a}}{\mathrm{V}_{1}^{2}}-\mathrm{p}_{2}-\frac{\mathrm{a}}{\mathrm{V}_{2}^{2}}\right)\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
4 $\frac{1}{2}\left(\mathrm{p}_{1}+\frac{\mathrm{a}}{\mathrm{V}_{1}^{2}}+\mathrm{p}_{2}+\frac{\mathrm{a}}{\mathrm{V}_{2}^{2}}\right)\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
Kinetic Theory of Gases

139061 The perfect gas equation for $4 \mathrm{~g}$ of hydrogen gas is

1 $\mathrm{pV}=\mathrm{RT}$
2 $\mathrm{pV}=2 \mathrm{RT}$
3 $\mathrm{pv}=\frac{1}{2} \mathrm{RT}$
4 $\mathrm{pV}=4 \mathrm{RT}$
Kinetic Theory of Gases

139062 An ideal gas is compressed isothermally until its pressure is doubled and then allowed to expand adiabatically to regain its original volume $\left(\gamma=1.4\right.$ and $\left.2^{-1.4}=0.38\right)$. The ratio of the final to initial pressure is

1 $0.76: 1$
2 $1: 1$
3 $0.66: 1$
4 $0.86: 1$
Kinetic Theory of Gases

139065 At what temperature volume of an ideal gas at $0^{\circ} \mathrm{C}$ becomes triple?

1 $546^{\circ} \mathrm{C}$
2 $182^{\circ} \mathrm{C}$
3 $819^{\circ} \mathrm{C}$
4 $646^{\circ} \mathrm{C}$
Kinetic Theory of Gases

139060 One mole of a van der Waal's gas obeying the equation
$\left(\mathbf{p}+\frac{a}{\mathbf{V}^{2}}\right)(\mathbf{V}-\mathbf{b})=\mathbf{R T}$
undergoes the quasi-static cyclic process which is shown in the $\mathrm{p}-\mathrm{V}$ diagram. The net heat absorbed by the gas in this process is

1 $\frac{1}{2}\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
2 $\frac{1}{2}\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right)\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
3 $\frac{1}{2}\left(\mathrm{p}_{1}+\frac{\mathrm{a}}{\mathrm{V}_{1}^{2}}-\mathrm{p}_{2}-\frac{\mathrm{a}}{\mathrm{V}_{2}^{2}}\right)\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
4 $\frac{1}{2}\left(\mathrm{p}_{1}+\frac{\mathrm{a}}{\mathrm{V}_{1}^{2}}+\mathrm{p}_{2}+\frac{\mathrm{a}}{\mathrm{V}_{2}^{2}}\right)\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
Kinetic Theory of Gases

139061 The perfect gas equation for $4 \mathrm{~g}$ of hydrogen gas is

1 $\mathrm{pV}=\mathrm{RT}$
2 $\mathrm{pV}=2 \mathrm{RT}$
3 $\mathrm{pv}=\frac{1}{2} \mathrm{RT}$
4 $\mathrm{pV}=4 \mathrm{RT}$
Kinetic Theory of Gases

139062 An ideal gas is compressed isothermally until its pressure is doubled and then allowed to expand adiabatically to regain its original volume $\left(\gamma=1.4\right.$ and $\left.2^{-1.4}=0.38\right)$. The ratio of the final to initial pressure is

1 $0.76: 1$
2 $1: 1$
3 $0.66: 1$
4 $0.86: 1$
Kinetic Theory of Gases

139065 At what temperature volume of an ideal gas at $0^{\circ} \mathrm{C}$ becomes triple?

1 $546^{\circ} \mathrm{C}$
2 $182^{\circ} \mathrm{C}$
3 $819^{\circ} \mathrm{C}$
4 $646^{\circ} \mathrm{C}$
Kinetic Theory of Gases

139060 One mole of a van der Waal's gas obeying the equation
$\left(\mathbf{p}+\frac{a}{\mathbf{V}^{2}}\right)(\mathbf{V}-\mathbf{b})=\mathbf{R T}$
undergoes the quasi-static cyclic process which is shown in the $\mathrm{p}-\mathrm{V}$ diagram. The net heat absorbed by the gas in this process is

1 $\frac{1}{2}\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
2 $\frac{1}{2}\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right)\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
3 $\frac{1}{2}\left(\mathrm{p}_{1}+\frac{\mathrm{a}}{\mathrm{V}_{1}^{2}}-\mathrm{p}_{2}-\frac{\mathrm{a}}{\mathrm{V}_{2}^{2}}\right)\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
4 $\frac{1}{2}\left(\mathrm{p}_{1}+\frac{\mathrm{a}}{\mathrm{V}_{1}^{2}}+\mathrm{p}_{2}+\frac{\mathrm{a}}{\mathrm{V}_{2}^{2}}\right)\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
Kinetic Theory of Gases

139061 The perfect gas equation for $4 \mathrm{~g}$ of hydrogen gas is

1 $\mathrm{pV}=\mathrm{RT}$
2 $\mathrm{pV}=2 \mathrm{RT}$
3 $\mathrm{pv}=\frac{1}{2} \mathrm{RT}$
4 $\mathrm{pV}=4 \mathrm{RT}$
Kinetic Theory of Gases

139062 An ideal gas is compressed isothermally until its pressure is doubled and then allowed to expand adiabatically to regain its original volume $\left(\gamma=1.4\right.$ and $\left.2^{-1.4}=0.38\right)$. The ratio of the final to initial pressure is

1 $0.76: 1$
2 $1: 1$
3 $0.66: 1$
4 $0.86: 1$
Kinetic Theory of Gases

139065 At what temperature volume of an ideal gas at $0^{\circ} \mathrm{C}$ becomes triple?

1 $546^{\circ} \mathrm{C}$
2 $182^{\circ} \mathrm{C}$
3 $819^{\circ} \mathrm{C}$
4 $646^{\circ} \mathrm{C}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139060 One mole of a van der Waal's gas obeying the equation
$\left(\mathbf{p}+\frac{a}{\mathbf{V}^{2}}\right)(\mathbf{V}-\mathbf{b})=\mathbf{R T}$
undergoes the quasi-static cyclic process which is shown in the $\mathrm{p}-\mathrm{V}$ diagram. The net heat absorbed by the gas in this process is

1 $\frac{1}{2}\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
2 $\frac{1}{2}\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right)\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
3 $\frac{1}{2}\left(\mathrm{p}_{1}+\frac{\mathrm{a}}{\mathrm{V}_{1}^{2}}-\mathrm{p}_{2}-\frac{\mathrm{a}}{\mathrm{V}_{2}^{2}}\right)\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
4 $\frac{1}{2}\left(\mathrm{p}_{1}+\frac{\mathrm{a}}{\mathrm{V}_{1}^{2}}+\mathrm{p}_{2}+\frac{\mathrm{a}}{\mathrm{V}_{2}^{2}}\right)\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
Kinetic Theory of Gases

139061 The perfect gas equation for $4 \mathrm{~g}$ of hydrogen gas is

1 $\mathrm{pV}=\mathrm{RT}$
2 $\mathrm{pV}=2 \mathrm{RT}$
3 $\mathrm{pv}=\frac{1}{2} \mathrm{RT}$
4 $\mathrm{pV}=4 \mathrm{RT}$
Kinetic Theory of Gases

139062 An ideal gas is compressed isothermally until its pressure is doubled and then allowed to expand adiabatically to regain its original volume $\left(\gamma=1.4\right.$ and $\left.2^{-1.4}=0.38\right)$. The ratio of the final to initial pressure is

1 $0.76: 1$
2 $1: 1$
3 $0.66: 1$
4 $0.86: 1$
Kinetic Theory of Gases

139065 At what temperature volume of an ideal gas at $0^{\circ} \mathrm{C}$ becomes triple?

1 $546^{\circ} \mathrm{C}$
2 $182^{\circ} \mathrm{C}$
3 $819^{\circ} \mathrm{C}$
4 $646^{\circ} \mathrm{C}$