Ideal Gas Equation and Vander Waal equation
Kinetic Theory of Gases

139071 A cylinder of volume $V$ contains a mixture of 8 $\mathrm{g}$ of oxygen, $14 \mathrm{~g}$ of nitrogen and $22 \mathrm{~g}$ of carbon dioxide at absolute temperature $T$. The pressure of the gas mixture will be ( $R$ is universal gas constant)

1 $\frac{2 \mathrm{RT}}{3 \mathrm{~V}}$
2 $\frac{3 \mathrm{RT}}{2 \mathrm{~V}}$
3 $\frac{5 \mathrm{RT}}{4 \mathrm{~V}}$
4 $\frac{7 \mathrm{RT}}{5 \mathrm{~V}}$
Kinetic Theory of Gases

139072 Two vessels separately contain two ideal gases $A$ and $B$ at the same temperature. The pressure of is twice that of $B$. Under these conditions, the density of $A$ is found to be one and half times the density of $B$, the ratio of molecular weights of $A$ and $B$ is

1 $\frac{1}{2}$
2 $\frac{2}{3}$
3 $\frac{3}{4}$
4 2
Kinetic Theory of Gases

139073 A vessel of volume $8 \times 10^{-3} \mathrm{~m}^{3}$ contains an ideal gas at $300 \mathrm{~K}$ and $200 \mathrm{kPa}$. The gas is allowed to leak till the pressure falls to $125 \mathrm{kPa}$. The amount of gas leaked is (assuming temperature remains constant)

1 $2.4 \mathrm{~mol}$
2 $24 \mathrm{~mol}$
3 $0.24 \mathrm{~mol}$
4 $240 \mathrm{~mol}$
Kinetic Theory of Gases

139074 An ideal gas is subjected to cyclic process involving four thermodynamic states, the amounts of heat $(Q)$ and work $(W)$ involved in each of these states are
$Q_{1}=6000 \mathrm{~J}, Q_{2}=-5500 \mathrm{~J} ;$
$Q_{3}=-3000 \mathrm{~J} ; Q_{4}=\mathbf{3 5 0 0} \mathrm{J} ;$
$\mathbf{W}_{1}=\mathbf{2 5 0 0} \mathrm{J} ; \mathbf{W}_{2}=-1000 \mathrm{~J} ;$
$\mathbf{W}_{3}=-1200 \mathrm{~J} ; \mathbf{W}_{4}=\mathbf{J} .$
The ratio of the net work done by the gas to the total heat absorbed by the gas is $\eta$. The values of $x$ and $\eta$ respectively are

1 $500 ; 7.5 \%$
2 $700 ; 10.5 \%$
3 $1000 ; 21 \%$
4 $1500 ; 15 \%$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139071 A cylinder of volume $V$ contains a mixture of 8 $\mathrm{g}$ of oxygen, $14 \mathrm{~g}$ of nitrogen and $22 \mathrm{~g}$ of carbon dioxide at absolute temperature $T$. The pressure of the gas mixture will be ( $R$ is universal gas constant)

1 $\frac{2 \mathrm{RT}}{3 \mathrm{~V}}$
2 $\frac{3 \mathrm{RT}}{2 \mathrm{~V}}$
3 $\frac{5 \mathrm{RT}}{4 \mathrm{~V}}$
4 $\frac{7 \mathrm{RT}}{5 \mathrm{~V}}$
Kinetic Theory of Gases

139072 Two vessels separately contain two ideal gases $A$ and $B$ at the same temperature. The pressure of is twice that of $B$. Under these conditions, the density of $A$ is found to be one and half times the density of $B$, the ratio of molecular weights of $A$ and $B$ is

1 $\frac{1}{2}$
2 $\frac{2}{3}$
3 $\frac{3}{4}$
4 2
Kinetic Theory of Gases

139073 A vessel of volume $8 \times 10^{-3} \mathrm{~m}^{3}$ contains an ideal gas at $300 \mathrm{~K}$ and $200 \mathrm{kPa}$. The gas is allowed to leak till the pressure falls to $125 \mathrm{kPa}$. The amount of gas leaked is (assuming temperature remains constant)

1 $2.4 \mathrm{~mol}$
2 $24 \mathrm{~mol}$
3 $0.24 \mathrm{~mol}$
4 $240 \mathrm{~mol}$
Kinetic Theory of Gases

139074 An ideal gas is subjected to cyclic process involving four thermodynamic states, the amounts of heat $(Q)$ and work $(W)$ involved in each of these states are
$Q_{1}=6000 \mathrm{~J}, Q_{2}=-5500 \mathrm{~J} ;$
$Q_{3}=-3000 \mathrm{~J} ; Q_{4}=\mathbf{3 5 0 0} \mathrm{J} ;$
$\mathbf{W}_{1}=\mathbf{2 5 0 0} \mathrm{J} ; \mathbf{W}_{2}=-1000 \mathrm{~J} ;$
$\mathbf{W}_{3}=-1200 \mathrm{~J} ; \mathbf{W}_{4}=\mathbf{J} .$
The ratio of the net work done by the gas to the total heat absorbed by the gas is $\eta$. The values of $x$ and $\eta$ respectively are

1 $500 ; 7.5 \%$
2 $700 ; 10.5 \%$
3 $1000 ; 21 \%$
4 $1500 ; 15 \%$
Kinetic Theory of Gases

139071 A cylinder of volume $V$ contains a mixture of 8 $\mathrm{g}$ of oxygen, $14 \mathrm{~g}$ of nitrogen and $22 \mathrm{~g}$ of carbon dioxide at absolute temperature $T$. The pressure of the gas mixture will be ( $R$ is universal gas constant)

1 $\frac{2 \mathrm{RT}}{3 \mathrm{~V}}$
2 $\frac{3 \mathrm{RT}}{2 \mathrm{~V}}$
3 $\frac{5 \mathrm{RT}}{4 \mathrm{~V}}$
4 $\frac{7 \mathrm{RT}}{5 \mathrm{~V}}$
Kinetic Theory of Gases

139072 Two vessels separately contain two ideal gases $A$ and $B$ at the same temperature. The pressure of is twice that of $B$. Under these conditions, the density of $A$ is found to be one and half times the density of $B$, the ratio of molecular weights of $A$ and $B$ is

1 $\frac{1}{2}$
2 $\frac{2}{3}$
3 $\frac{3}{4}$
4 2
Kinetic Theory of Gases

139073 A vessel of volume $8 \times 10^{-3} \mathrm{~m}^{3}$ contains an ideal gas at $300 \mathrm{~K}$ and $200 \mathrm{kPa}$. The gas is allowed to leak till the pressure falls to $125 \mathrm{kPa}$. The amount of gas leaked is (assuming temperature remains constant)

1 $2.4 \mathrm{~mol}$
2 $24 \mathrm{~mol}$
3 $0.24 \mathrm{~mol}$
4 $240 \mathrm{~mol}$
Kinetic Theory of Gases

139074 An ideal gas is subjected to cyclic process involving four thermodynamic states, the amounts of heat $(Q)$ and work $(W)$ involved in each of these states are
$Q_{1}=6000 \mathrm{~J}, Q_{2}=-5500 \mathrm{~J} ;$
$Q_{3}=-3000 \mathrm{~J} ; Q_{4}=\mathbf{3 5 0 0} \mathrm{J} ;$
$\mathbf{W}_{1}=\mathbf{2 5 0 0} \mathrm{J} ; \mathbf{W}_{2}=-1000 \mathrm{~J} ;$
$\mathbf{W}_{3}=-1200 \mathrm{~J} ; \mathbf{W}_{4}=\mathbf{J} .$
The ratio of the net work done by the gas to the total heat absorbed by the gas is $\eta$. The values of $x$ and $\eta$ respectively are

1 $500 ; 7.5 \%$
2 $700 ; 10.5 \%$
3 $1000 ; 21 \%$
4 $1500 ; 15 \%$
Kinetic Theory of Gases

139071 A cylinder of volume $V$ contains a mixture of 8 $\mathrm{g}$ of oxygen, $14 \mathrm{~g}$ of nitrogen and $22 \mathrm{~g}$ of carbon dioxide at absolute temperature $T$. The pressure of the gas mixture will be ( $R$ is universal gas constant)

1 $\frac{2 \mathrm{RT}}{3 \mathrm{~V}}$
2 $\frac{3 \mathrm{RT}}{2 \mathrm{~V}}$
3 $\frac{5 \mathrm{RT}}{4 \mathrm{~V}}$
4 $\frac{7 \mathrm{RT}}{5 \mathrm{~V}}$
Kinetic Theory of Gases

139072 Two vessels separately contain two ideal gases $A$ and $B$ at the same temperature. The pressure of is twice that of $B$. Under these conditions, the density of $A$ is found to be one and half times the density of $B$, the ratio of molecular weights of $A$ and $B$ is

1 $\frac{1}{2}$
2 $\frac{2}{3}$
3 $\frac{3}{4}$
4 2
Kinetic Theory of Gases

139073 A vessel of volume $8 \times 10^{-3} \mathrm{~m}^{3}$ contains an ideal gas at $300 \mathrm{~K}$ and $200 \mathrm{kPa}$. The gas is allowed to leak till the pressure falls to $125 \mathrm{kPa}$. The amount of gas leaked is (assuming temperature remains constant)

1 $2.4 \mathrm{~mol}$
2 $24 \mathrm{~mol}$
3 $0.24 \mathrm{~mol}$
4 $240 \mathrm{~mol}$
Kinetic Theory of Gases

139074 An ideal gas is subjected to cyclic process involving four thermodynamic states, the amounts of heat $(Q)$ and work $(W)$ involved in each of these states are
$Q_{1}=6000 \mathrm{~J}, Q_{2}=-5500 \mathrm{~J} ;$
$Q_{3}=-3000 \mathrm{~J} ; Q_{4}=\mathbf{3 5 0 0} \mathrm{J} ;$
$\mathbf{W}_{1}=\mathbf{2 5 0 0} \mathrm{J} ; \mathbf{W}_{2}=-1000 \mathrm{~J} ;$
$\mathbf{W}_{3}=-1200 \mathrm{~J} ; \mathbf{W}_{4}=\mathbf{J} .$
The ratio of the net work done by the gas to the total heat absorbed by the gas is $\eta$. The values of $x$ and $\eta$ respectively are

1 $500 ; 7.5 \%$
2 $700 ; 10.5 \%$
3 $1000 ; 21 \%$
4 $1500 ; 15 \%$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here