139074
An ideal gas is subjected to cyclic process involving four thermodynamic states, the amounts of heat $(Q)$ and work $(W)$ involved in each of these states are
$Q_{1}=6000 \mathrm{~J}, Q_{2}=-5500 \mathrm{~J} ;$
$Q_{3}=-3000 \mathrm{~J} ; Q_{4}=\mathbf{3 5 0 0} \mathrm{J} ;$
$\mathbf{W}_{1}=\mathbf{2 5 0 0} \mathrm{J} ; \mathbf{W}_{2}=-1000 \mathrm{~J} ;$
$\mathbf{W}_{3}=-1200 \mathrm{~J} ; \mathbf{W}_{4}=\mathbf{J} .$
The ratio of the net work done by the gas to the total heat absorbed by the gas is $\eta$. The values of $x$ and $\eta$ respectively are
139074
An ideal gas is subjected to cyclic process involving four thermodynamic states, the amounts of heat $(Q)$ and work $(W)$ involved in each of these states are
$Q_{1}=6000 \mathrm{~J}, Q_{2}=-5500 \mathrm{~J} ;$
$Q_{3}=-3000 \mathrm{~J} ; Q_{4}=\mathbf{3 5 0 0} \mathrm{J} ;$
$\mathbf{W}_{1}=\mathbf{2 5 0 0} \mathrm{J} ; \mathbf{W}_{2}=-1000 \mathrm{~J} ;$
$\mathbf{W}_{3}=-1200 \mathrm{~J} ; \mathbf{W}_{4}=\mathbf{J} .$
The ratio of the net work done by the gas to the total heat absorbed by the gas is $\eta$. The values of $x$ and $\eta$ respectively are
139074
An ideal gas is subjected to cyclic process involving four thermodynamic states, the amounts of heat $(Q)$ and work $(W)$ involved in each of these states are
$Q_{1}=6000 \mathrm{~J}, Q_{2}=-5500 \mathrm{~J} ;$
$Q_{3}=-3000 \mathrm{~J} ; Q_{4}=\mathbf{3 5 0 0} \mathrm{J} ;$
$\mathbf{W}_{1}=\mathbf{2 5 0 0} \mathrm{J} ; \mathbf{W}_{2}=-1000 \mathrm{~J} ;$
$\mathbf{W}_{3}=-1200 \mathrm{~J} ; \mathbf{W}_{4}=\mathbf{J} .$
The ratio of the net work done by the gas to the total heat absorbed by the gas is $\eta$. The values of $x$ and $\eta$ respectively are
139074
An ideal gas is subjected to cyclic process involving four thermodynamic states, the amounts of heat $(Q)$ and work $(W)$ involved in each of these states are
$Q_{1}=6000 \mathrm{~J}, Q_{2}=-5500 \mathrm{~J} ;$
$Q_{3}=-3000 \mathrm{~J} ; Q_{4}=\mathbf{3 5 0 0} \mathrm{J} ;$
$\mathbf{W}_{1}=\mathbf{2 5 0 0} \mathrm{J} ; \mathbf{W}_{2}=-1000 \mathrm{~J} ;$
$\mathbf{W}_{3}=-1200 \mathrm{~J} ; \mathbf{W}_{4}=\mathbf{J} .$
The ratio of the net work done by the gas to the total heat absorbed by the gas is $\eta$. The values of $x$ and $\eta$ respectively are