Composition of Nucleus
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

147522 If the nucleus ${ }_{13}^{27} \mathrm{Al}$ has a nuclear radius of about $3.6 \mathrm{fm}$, then ${ }_{52}^{125} \mathrm{Te}$ would have its radius approximately as

1 $6.0 \mathrm{fm}$
2 $9.6 \mathrm{fm}$
3 $12.0 \mathrm{fm}$
4 $4.8 \mathrm{fm}$
NUCLEAR PHYSICS

147525 It is assumed that nuclear mass is of the order of $10^{-27} \mathrm{~kg}$ and nuclear radius is of the order of $10^{-15} \mathrm{~m}$. The nuclear density is of the order of

1 $10^{15}$
2 $10^{10}$
3 $10^{18}$
4 $10^{23}$
NUCLEAR PHYSICS

147527 The mass defect in a particular nuclear reaction is $0.3 \mathrm{~g}$. The amount of energy liberated,
in $\mathrm{kWh}$ is (velocity of light $=3 \times 10^{6} \mathrm{~ms}^{-1}$ )

1 $1.5 \times 10^{6}$
2 $2.5 \times 10^{6}$
3 $3 \times 10^{6}$
4 $7.5 \times 10^{6}$
NUCLEAR PHYSICS

147524 The $K_{a}-X$ ray of Molybdenum has a wavelength of $71 \times 10^{-12} \mathrm{~m}$. If the energy of a Molybdenum atom with $\mathrm{K}$-electron removed is 23.32 $\mathrm{KeV}$, then the energy of Molybdenum atom, when an $\mathrm{L}$-electron removed is $(\mathrm{hc}=$ $12.42 \times 10^{-7} \mathrm{eV}$ )
#[Qdiff: Hard, QCat: Numerical Based, examname: Atomic mass, Mass number, [EAMCET-1992]
, $\mathrm{M}=13.00335 \mathrm{AMU}$
, $\mathrm{A}=13$
, Mass of neutrons $\left(\mathrm{M}_{\mathrm{ne}}\right)=13.00335-13.0$
, $=0.00335 \mathrm{AMU}$
, Binding energy $(B E)=M_{n e} \times c^{2}$
, $=0.00335 \times 931 \mathrm{MeV}$
, $\mathrm{B}=3.12 \mathrm{MeV}$
, 204. A radio active nucleus with mass number $A$ splits into the nuclei whose mass numbers are in the ratio $3: 2$. The ratio of their radii is
, (a) $\left(\frac{3}{2}\right)$
, (b) $\left(\frac{3}{2}\right)^{1 / 3}$
, (c) $\left(\frac{3}{2}\right)^{1 / 2}$
, (d) 1
]#

1 $17.5 \mathrm{keV}$
2 $40.82 \mathrm{keV}$
3 $23.32 \mathrm{keV}$
4 $5.82 \mathrm{keV}$
NUCLEAR PHYSICS

147522 If the nucleus ${ }_{13}^{27} \mathrm{Al}$ has a nuclear radius of about $3.6 \mathrm{fm}$, then ${ }_{52}^{125} \mathrm{Te}$ would have its radius approximately as

1 $6.0 \mathrm{fm}$
2 $9.6 \mathrm{fm}$
3 $12.0 \mathrm{fm}$
4 $4.8 \mathrm{fm}$
NUCLEAR PHYSICS

147525 It is assumed that nuclear mass is of the order of $10^{-27} \mathrm{~kg}$ and nuclear radius is of the order of $10^{-15} \mathrm{~m}$. The nuclear density is of the order of

1 $10^{15}$
2 $10^{10}$
3 $10^{18}$
4 $10^{23}$
NUCLEAR PHYSICS

147527 The mass defect in a particular nuclear reaction is $0.3 \mathrm{~g}$. The amount of energy liberated,
in $\mathrm{kWh}$ is (velocity of light $=3 \times 10^{6} \mathrm{~ms}^{-1}$ )

1 $1.5 \times 10^{6}$
2 $2.5 \times 10^{6}$
3 $3 \times 10^{6}$
4 $7.5 \times 10^{6}$
NUCLEAR PHYSICS

147524 The $K_{a}-X$ ray of Molybdenum has a wavelength of $71 \times 10^{-12} \mathrm{~m}$. If the energy of a Molybdenum atom with $\mathrm{K}$-electron removed is 23.32 $\mathrm{KeV}$, then the energy of Molybdenum atom, when an $\mathrm{L}$-electron removed is $(\mathrm{hc}=$ $12.42 \times 10^{-7} \mathrm{eV}$ )
#[Qdiff: Hard, QCat: Numerical Based, examname: Atomic mass, Mass number, [EAMCET-1992]
, $\mathrm{M}=13.00335 \mathrm{AMU}$
, $\mathrm{A}=13$
, Mass of neutrons $\left(\mathrm{M}_{\mathrm{ne}}\right)=13.00335-13.0$
, $=0.00335 \mathrm{AMU}$
, Binding energy $(B E)=M_{n e} \times c^{2}$
, $=0.00335 \times 931 \mathrm{MeV}$
, $\mathrm{B}=3.12 \mathrm{MeV}$
, 204. A radio active nucleus with mass number $A$ splits into the nuclei whose mass numbers are in the ratio $3: 2$. The ratio of their radii is
, (a) $\left(\frac{3}{2}\right)$
, (b) $\left(\frac{3}{2}\right)^{1 / 3}$
, (c) $\left(\frac{3}{2}\right)^{1 / 2}$
, (d) 1
]#

1 $17.5 \mathrm{keV}$
2 $40.82 \mathrm{keV}$
3 $23.32 \mathrm{keV}$
4 $5.82 \mathrm{keV}$
NUCLEAR PHYSICS

147522 If the nucleus ${ }_{13}^{27} \mathrm{Al}$ has a nuclear radius of about $3.6 \mathrm{fm}$, then ${ }_{52}^{125} \mathrm{Te}$ would have its radius approximately as

1 $6.0 \mathrm{fm}$
2 $9.6 \mathrm{fm}$
3 $12.0 \mathrm{fm}$
4 $4.8 \mathrm{fm}$
NUCLEAR PHYSICS

147525 It is assumed that nuclear mass is of the order of $10^{-27} \mathrm{~kg}$ and nuclear radius is of the order of $10^{-15} \mathrm{~m}$. The nuclear density is of the order of

1 $10^{15}$
2 $10^{10}$
3 $10^{18}$
4 $10^{23}$
NUCLEAR PHYSICS

147527 The mass defect in a particular nuclear reaction is $0.3 \mathrm{~g}$. The amount of energy liberated,
in $\mathrm{kWh}$ is (velocity of light $=3 \times 10^{6} \mathrm{~ms}^{-1}$ )

1 $1.5 \times 10^{6}$
2 $2.5 \times 10^{6}$
3 $3 \times 10^{6}$
4 $7.5 \times 10^{6}$
NUCLEAR PHYSICS

147524 The $K_{a}-X$ ray of Molybdenum has a wavelength of $71 \times 10^{-12} \mathrm{~m}$. If the energy of a Molybdenum atom with $\mathrm{K}$-electron removed is 23.32 $\mathrm{KeV}$, then the energy of Molybdenum atom, when an $\mathrm{L}$-electron removed is $(\mathrm{hc}=$ $12.42 \times 10^{-7} \mathrm{eV}$ )
#[Qdiff: Hard, QCat: Numerical Based, examname: Atomic mass, Mass number, [EAMCET-1992]
, $\mathrm{M}=13.00335 \mathrm{AMU}$
, $\mathrm{A}=13$
, Mass of neutrons $\left(\mathrm{M}_{\mathrm{ne}}\right)=13.00335-13.0$
, $=0.00335 \mathrm{AMU}$
, Binding energy $(B E)=M_{n e} \times c^{2}$
, $=0.00335 \times 931 \mathrm{MeV}$
, $\mathrm{B}=3.12 \mathrm{MeV}$
, 204. A radio active nucleus with mass number $A$ splits into the nuclei whose mass numbers are in the ratio $3: 2$. The ratio of their radii is
, (a) $\left(\frac{3}{2}\right)$
, (b) $\left(\frac{3}{2}\right)^{1 / 3}$
, (c) $\left(\frac{3}{2}\right)^{1 / 2}$
, (d) 1
]#

1 $17.5 \mathrm{keV}$
2 $40.82 \mathrm{keV}$
3 $23.32 \mathrm{keV}$
4 $5.82 \mathrm{keV}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

147522 If the nucleus ${ }_{13}^{27} \mathrm{Al}$ has a nuclear radius of about $3.6 \mathrm{fm}$, then ${ }_{52}^{125} \mathrm{Te}$ would have its radius approximately as

1 $6.0 \mathrm{fm}$
2 $9.6 \mathrm{fm}$
3 $12.0 \mathrm{fm}$
4 $4.8 \mathrm{fm}$
NUCLEAR PHYSICS

147525 It is assumed that nuclear mass is of the order of $10^{-27} \mathrm{~kg}$ and nuclear radius is of the order of $10^{-15} \mathrm{~m}$. The nuclear density is of the order of

1 $10^{15}$
2 $10^{10}$
3 $10^{18}$
4 $10^{23}$
NUCLEAR PHYSICS

147527 The mass defect in a particular nuclear reaction is $0.3 \mathrm{~g}$. The amount of energy liberated,
in $\mathrm{kWh}$ is (velocity of light $=3 \times 10^{6} \mathrm{~ms}^{-1}$ )

1 $1.5 \times 10^{6}$
2 $2.5 \times 10^{6}$
3 $3 \times 10^{6}$
4 $7.5 \times 10^{6}$
NUCLEAR PHYSICS

147524 The $K_{a}-X$ ray of Molybdenum has a wavelength of $71 \times 10^{-12} \mathrm{~m}$. If the energy of a Molybdenum atom with $\mathrm{K}$-electron removed is 23.32 $\mathrm{KeV}$, then the energy of Molybdenum atom, when an $\mathrm{L}$-electron removed is $(\mathrm{hc}=$ $12.42 \times 10^{-7} \mathrm{eV}$ )
#[Qdiff: Hard, QCat: Numerical Based, examname: Atomic mass, Mass number, [EAMCET-1992]
, $\mathrm{M}=13.00335 \mathrm{AMU}$
, $\mathrm{A}=13$
, Mass of neutrons $\left(\mathrm{M}_{\mathrm{ne}}\right)=13.00335-13.0$
, $=0.00335 \mathrm{AMU}$
, Binding energy $(B E)=M_{n e} \times c^{2}$
, $=0.00335 \times 931 \mathrm{MeV}$
, $\mathrm{B}=3.12 \mathrm{MeV}$
, 204. A radio active nucleus with mass number $A$ splits into the nuclei whose mass numbers are in the ratio $3: 2$. The ratio of their radii is
, (a) $\left(\frac{3}{2}\right)$
, (b) $\left(\frac{3}{2}\right)^{1 / 3}$
, (c) $\left(\frac{3}{2}\right)^{1 / 2}$
, (d) 1
]#

1 $17.5 \mathrm{keV}$
2 $40.82 \mathrm{keV}$
3 $23.32 \mathrm{keV}$
4 $5.82 \mathrm{keV}$