147513
The binding energy of deuteron $\left({ }_{1}^{2} \mathrm{H}\right)$ is $\mathbf{1 . 1 5}$
$\mathrm{MeV}$ per nucleon and an alpha particle $\left({ }_{2}^{4} \mathrm{H}\right)$ has a binding energy 7. $1 \mathrm{MeV}$ per nucleon. Then in the reaction
${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+\mathrm{Q}$
the energy released $Q$ is
147516 In the reaction ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}$, if the binding energies of ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H}$ and ${ }_{2}^{4} \mathrm{He}$ are respectively $\mathrm{a}, \mathrm{b}$ and $\mathrm{c}$ (in $\mathrm{MeV}$ ), then the energy (in $\mathrm{MeV}$ ) released in this reaction is
147513
The binding energy of deuteron $\left({ }_{1}^{2} \mathrm{H}\right)$ is $\mathbf{1 . 1 5}$
$\mathrm{MeV}$ per nucleon and an alpha particle $\left({ }_{2}^{4} \mathrm{H}\right)$ has a binding energy 7. $1 \mathrm{MeV}$ per nucleon. Then in the reaction
${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+\mathrm{Q}$
the energy released $Q$ is
147516 In the reaction ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}$, if the binding energies of ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H}$ and ${ }_{2}^{4} \mathrm{He}$ are respectively $\mathrm{a}, \mathrm{b}$ and $\mathrm{c}$ (in $\mathrm{MeV}$ ), then the energy (in $\mathrm{MeV}$ ) released in this reaction is
147513
The binding energy of deuteron $\left({ }_{1}^{2} \mathrm{H}\right)$ is $\mathbf{1 . 1 5}$
$\mathrm{MeV}$ per nucleon and an alpha particle $\left({ }_{2}^{4} \mathrm{H}\right)$ has a binding energy 7. $1 \mathrm{MeV}$ per nucleon. Then in the reaction
${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+\mathrm{Q}$
the energy released $Q$ is
147516 In the reaction ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}$, if the binding energies of ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H}$ and ${ }_{2}^{4} \mathrm{He}$ are respectively $\mathrm{a}, \mathrm{b}$ and $\mathrm{c}$ (in $\mathrm{MeV}$ ), then the energy (in $\mathrm{MeV}$ ) released in this reaction is
147513
The binding energy of deuteron $\left({ }_{1}^{2} \mathrm{H}\right)$ is $\mathbf{1 . 1 5}$
$\mathrm{MeV}$ per nucleon and an alpha particle $\left({ }_{2}^{4} \mathrm{H}\right)$ has a binding energy 7. $1 \mathrm{MeV}$ per nucleon. Then in the reaction
${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+\mathrm{Q}$
the energy released $Q$ is
147516 In the reaction ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}$, if the binding energies of ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H}$ and ${ }_{2}^{4} \mathrm{He}$ are respectively $\mathrm{a}, \mathrm{b}$ and $\mathrm{c}$ (in $\mathrm{MeV}$ ), then the energy (in $\mathrm{MeV}$ ) released in this reaction is
147513
The binding energy of deuteron $\left({ }_{1}^{2} \mathrm{H}\right)$ is $\mathbf{1 . 1 5}$
$\mathrm{MeV}$ per nucleon and an alpha particle $\left({ }_{2}^{4} \mathrm{H}\right)$ has a binding energy 7. $1 \mathrm{MeV}$ per nucleon. Then in the reaction
${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+\mathrm{Q}$
the energy released $Q$ is
147516 In the reaction ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}$, if the binding energies of ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H}$ and ${ }_{2}^{4} \mathrm{He}$ are respectively $\mathrm{a}, \mathrm{b}$ and $\mathrm{c}$ (in $\mathrm{MeV}$ ), then the energy (in $\mathrm{MeV}$ ) released in this reaction is