Composition of Nucleus
NUCLEAR PHYSICS

147490 Consider the nuclear reaction $\mathbf{X}^{200} \rightarrow \mathbf{A}^{110}+$ $B^{80}$. If the binding energy per nucleon for $X, A$ and $B$ are 7.4 MeV, 8.2 $\mathrm{MeV}$ and $8.1 \mathrm{MeV}$ respectively, then the energy released in the reaction is

1 $70 \mathrm{MeV}$
2 $200 \mathrm{MeV}$
3 $190 \mathrm{MeV}$
4 $10 \mathrm{MeV}$
5 $1480 \mathrm{MeV}$
NUCLEAR PHYSICS

147491 If the total binding energies of ${ }_{1} \mathrm{H}^{2},{ }_{2} \mathrm{He}^{4},{ }_{26} \mathrm{Fe}^{56}$ and ${ }_{92} \mathrm{U}^{235}$ nuclei are $2.22,28.3,492$ and 1768 $\mathrm{MeV}$ respectively, then identify the most stable nucleus out of the following

1 ${ }_{26} \mathrm{Fe}^{56}$
2 ${ }_{1} \mathrm{H}^{2}$
3 ${ }_{92} \mathrm{U}^{235}$
4 ${ }_{2} \mathrm{He}^{4}$
NUCLEAR PHYSICS

147492 The binding energy per nucleon of $\mathrm{C}^{12}$ is $E_{1}$ and that of $C^{3}$ is $E_{2}$. The energy required to remove one neutron from $\mathrm{C}^{13}$ is
#[Qdiff: Hard, QCat: Numerical Based, examname: BITSAT-2008]
, Mass of proton $\left(\mathrm{M}_{\mathrm{P}}\right)=1.007277 \mathrm{AMU}$
, Mass of neutron $\left(\mathrm{M}_{\mathrm{n}}\right)=1.008665 \mathrm{AMU}$
, Mass of Lithium nucleus $=7.0160005 \mathrm{AMU}$
, $\therefore$ Mass defect $=$ Mass of nucleons - mass of nucleus
, $=\left(3 \mathrm{M}_{\mathrm{P}}+4 \mathrm{M}_{\mathrm{N}}\right)-$ mass of nucleus
, $=(3 \times 1.007277)+(4 \times 1.008665)-7.016005$
, $=0.04048$.
, 167. The binding energy of the innermost electron tungsten is $40 \mathrm{keV}$. To produce characteristic $\mathrm{X}$-rays using a tungsten target in an X-ray tube the potential difference $V$ between the cathode and the anticathode should be -
, (a) $\mathrm{V} \lt 40 \mathrm{kV}$
, (c) $\mathrm{V}>40 \mathrm{kV}$
, (b) $\mathrm{V} \leq 4 \mathrm{kV}$
, (d) $\mathrm{V}>/ \lt 40 \mathrm{kV}$
]#

1 $12 \mathrm{E}_{1}+12 \mathrm{E}_{2}$
2 $13 \mathrm{E}_{2}-12 \mathrm{E}_{1}$
3 $12 \mathrm{E}_{2}-13 \mathrm{E}_{1}$
4 $13 \mathrm{E}_{2}+12 \mathrm{E}_{1}$
NUCLEAR PHYSICS

147494 Deuteron is composed of a proton and a neutron. If deuteron breaks, the energy released is
$\left(m_{d}=2.01355 u, m_{p}=1.00728 u, m_{n}=1.00867 u\right.$ and $1 \mathrm{u}=931.5 \mathrm{MeV}$ )

1 $-2.24 \mathrm{MeV}$
2 $+3.23 \mathrm{MeV}$
3 $-5.00 \mathrm{MeV}$
4 $+3.00 \mathrm{MeV}$
NUCLEAR PHYSICS

147495 The mass number of $\mathrm{He}$ is 4 and that for sulphur is 32. The radius of sulphur nuclei is larger than that of helium of

1 $\sqrt{8}$
2 4
3 2
4 8
NUCLEAR PHYSICS

147490 Consider the nuclear reaction $\mathbf{X}^{200} \rightarrow \mathbf{A}^{110}+$ $B^{80}$. If the binding energy per nucleon for $X, A$ and $B$ are 7.4 MeV, 8.2 $\mathrm{MeV}$ and $8.1 \mathrm{MeV}$ respectively, then the energy released in the reaction is

1 $70 \mathrm{MeV}$
2 $200 \mathrm{MeV}$
3 $190 \mathrm{MeV}$
4 $10 \mathrm{MeV}$
5 $1480 \mathrm{MeV}$
NUCLEAR PHYSICS

147491 If the total binding energies of ${ }_{1} \mathrm{H}^{2},{ }_{2} \mathrm{He}^{4},{ }_{26} \mathrm{Fe}^{56}$ and ${ }_{92} \mathrm{U}^{235}$ nuclei are $2.22,28.3,492$ and 1768 $\mathrm{MeV}$ respectively, then identify the most stable nucleus out of the following

1 ${ }_{26} \mathrm{Fe}^{56}$
2 ${ }_{1} \mathrm{H}^{2}$
3 ${ }_{92} \mathrm{U}^{235}$
4 ${ }_{2} \mathrm{He}^{4}$
NUCLEAR PHYSICS

147492 The binding energy per nucleon of $\mathrm{C}^{12}$ is $E_{1}$ and that of $C^{3}$ is $E_{2}$. The energy required to remove one neutron from $\mathrm{C}^{13}$ is
#[Qdiff: Hard, QCat: Numerical Based, examname: BITSAT-2008]
, Mass of proton $\left(\mathrm{M}_{\mathrm{P}}\right)=1.007277 \mathrm{AMU}$
, Mass of neutron $\left(\mathrm{M}_{\mathrm{n}}\right)=1.008665 \mathrm{AMU}$
, Mass of Lithium nucleus $=7.0160005 \mathrm{AMU}$
, $\therefore$ Mass defect $=$ Mass of nucleons - mass of nucleus
, $=\left(3 \mathrm{M}_{\mathrm{P}}+4 \mathrm{M}_{\mathrm{N}}\right)-$ mass of nucleus
, $=(3 \times 1.007277)+(4 \times 1.008665)-7.016005$
, $=0.04048$.
, 167. The binding energy of the innermost electron tungsten is $40 \mathrm{keV}$. To produce characteristic $\mathrm{X}$-rays using a tungsten target in an X-ray tube the potential difference $V$ between the cathode and the anticathode should be -
, (a) $\mathrm{V} \lt 40 \mathrm{kV}$
, (c) $\mathrm{V}>40 \mathrm{kV}$
, (b) $\mathrm{V} \leq 4 \mathrm{kV}$
, (d) $\mathrm{V}>/ \lt 40 \mathrm{kV}$
]#

1 $12 \mathrm{E}_{1}+12 \mathrm{E}_{2}$
2 $13 \mathrm{E}_{2}-12 \mathrm{E}_{1}$
3 $12 \mathrm{E}_{2}-13 \mathrm{E}_{1}$
4 $13 \mathrm{E}_{2}+12 \mathrm{E}_{1}$
NUCLEAR PHYSICS

147494 Deuteron is composed of a proton and a neutron. If deuteron breaks, the energy released is
$\left(m_{d}=2.01355 u, m_{p}=1.00728 u, m_{n}=1.00867 u\right.$ and $1 \mathrm{u}=931.5 \mathrm{MeV}$ )

1 $-2.24 \mathrm{MeV}$
2 $+3.23 \mathrm{MeV}$
3 $-5.00 \mathrm{MeV}$
4 $+3.00 \mathrm{MeV}$
NUCLEAR PHYSICS

147495 The mass number of $\mathrm{He}$ is 4 and that for sulphur is 32. The radius of sulphur nuclei is larger than that of helium of

1 $\sqrt{8}$
2 4
3 2
4 8
NUCLEAR PHYSICS

147490 Consider the nuclear reaction $\mathbf{X}^{200} \rightarrow \mathbf{A}^{110}+$ $B^{80}$. If the binding energy per nucleon for $X, A$ and $B$ are 7.4 MeV, 8.2 $\mathrm{MeV}$ and $8.1 \mathrm{MeV}$ respectively, then the energy released in the reaction is

1 $70 \mathrm{MeV}$
2 $200 \mathrm{MeV}$
3 $190 \mathrm{MeV}$
4 $10 \mathrm{MeV}$
5 $1480 \mathrm{MeV}$
NUCLEAR PHYSICS

147491 If the total binding energies of ${ }_{1} \mathrm{H}^{2},{ }_{2} \mathrm{He}^{4},{ }_{26} \mathrm{Fe}^{56}$ and ${ }_{92} \mathrm{U}^{235}$ nuclei are $2.22,28.3,492$ and 1768 $\mathrm{MeV}$ respectively, then identify the most stable nucleus out of the following

1 ${ }_{26} \mathrm{Fe}^{56}$
2 ${ }_{1} \mathrm{H}^{2}$
3 ${ }_{92} \mathrm{U}^{235}$
4 ${ }_{2} \mathrm{He}^{4}$
NUCLEAR PHYSICS

147492 The binding energy per nucleon of $\mathrm{C}^{12}$ is $E_{1}$ and that of $C^{3}$ is $E_{2}$. The energy required to remove one neutron from $\mathrm{C}^{13}$ is
#[Qdiff: Hard, QCat: Numerical Based, examname: BITSAT-2008]
, Mass of proton $\left(\mathrm{M}_{\mathrm{P}}\right)=1.007277 \mathrm{AMU}$
, Mass of neutron $\left(\mathrm{M}_{\mathrm{n}}\right)=1.008665 \mathrm{AMU}$
, Mass of Lithium nucleus $=7.0160005 \mathrm{AMU}$
, $\therefore$ Mass defect $=$ Mass of nucleons - mass of nucleus
, $=\left(3 \mathrm{M}_{\mathrm{P}}+4 \mathrm{M}_{\mathrm{N}}\right)-$ mass of nucleus
, $=(3 \times 1.007277)+(4 \times 1.008665)-7.016005$
, $=0.04048$.
, 167. The binding energy of the innermost electron tungsten is $40 \mathrm{keV}$. To produce characteristic $\mathrm{X}$-rays using a tungsten target in an X-ray tube the potential difference $V$ between the cathode and the anticathode should be -
, (a) $\mathrm{V} \lt 40 \mathrm{kV}$
, (c) $\mathrm{V}>40 \mathrm{kV}$
, (b) $\mathrm{V} \leq 4 \mathrm{kV}$
, (d) $\mathrm{V}>/ \lt 40 \mathrm{kV}$
]#

1 $12 \mathrm{E}_{1}+12 \mathrm{E}_{2}$
2 $13 \mathrm{E}_{2}-12 \mathrm{E}_{1}$
3 $12 \mathrm{E}_{2}-13 \mathrm{E}_{1}$
4 $13 \mathrm{E}_{2}+12 \mathrm{E}_{1}$
NUCLEAR PHYSICS

147494 Deuteron is composed of a proton and a neutron. If deuteron breaks, the energy released is
$\left(m_{d}=2.01355 u, m_{p}=1.00728 u, m_{n}=1.00867 u\right.$ and $1 \mathrm{u}=931.5 \mathrm{MeV}$ )

1 $-2.24 \mathrm{MeV}$
2 $+3.23 \mathrm{MeV}$
3 $-5.00 \mathrm{MeV}$
4 $+3.00 \mathrm{MeV}$
NUCLEAR PHYSICS

147495 The mass number of $\mathrm{He}$ is 4 and that for sulphur is 32. The radius of sulphur nuclei is larger than that of helium of

1 $\sqrt{8}$
2 4
3 2
4 8
NUCLEAR PHYSICS

147490 Consider the nuclear reaction $\mathbf{X}^{200} \rightarrow \mathbf{A}^{110}+$ $B^{80}$. If the binding energy per nucleon for $X, A$ and $B$ are 7.4 MeV, 8.2 $\mathrm{MeV}$ and $8.1 \mathrm{MeV}$ respectively, then the energy released in the reaction is

1 $70 \mathrm{MeV}$
2 $200 \mathrm{MeV}$
3 $190 \mathrm{MeV}$
4 $10 \mathrm{MeV}$
5 $1480 \mathrm{MeV}$
NUCLEAR PHYSICS

147491 If the total binding energies of ${ }_{1} \mathrm{H}^{2},{ }_{2} \mathrm{He}^{4},{ }_{26} \mathrm{Fe}^{56}$ and ${ }_{92} \mathrm{U}^{235}$ nuclei are $2.22,28.3,492$ and 1768 $\mathrm{MeV}$ respectively, then identify the most stable nucleus out of the following

1 ${ }_{26} \mathrm{Fe}^{56}$
2 ${ }_{1} \mathrm{H}^{2}$
3 ${ }_{92} \mathrm{U}^{235}$
4 ${ }_{2} \mathrm{He}^{4}$
NUCLEAR PHYSICS

147492 The binding energy per nucleon of $\mathrm{C}^{12}$ is $E_{1}$ and that of $C^{3}$ is $E_{2}$. The energy required to remove one neutron from $\mathrm{C}^{13}$ is
#[Qdiff: Hard, QCat: Numerical Based, examname: BITSAT-2008]
, Mass of proton $\left(\mathrm{M}_{\mathrm{P}}\right)=1.007277 \mathrm{AMU}$
, Mass of neutron $\left(\mathrm{M}_{\mathrm{n}}\right)=1.008665 \mathrm{AMU}$
, Mass of Lithium nucleus $=7.0160005 \mathrm{AMU}$
, $\therefore$ Mass defect $=$ Mass of nucleons - mass of nucleus
, $=\left(3 \mathrm{M}_{\mathrm{P}}+4 \mathrm{M}_{\mathrm{N}}\right)-$ mass of nucleus
, $=(3 \times 1.007277)+(4 \times 1.008665)-7.016005$
, $=0.04048$.
, 167. The binding energy of the innermost electron tungsten is $40 \mathrm{keV}$. To produce characteristic $\mathrm{X}$-rays using a tungsten target in an X-ray tube the potential difference $V$ between the cathode and the anticathode should be -
, (a) $\mathrm{V} \lt 40 \mathrm{kV}$
, (c) $\mathrm{V}>40 \mathrm{kV}$
, (b) $\mathrm{V} \leq 4 \mathrm{kV}$
, (d) $\mathrm{V}>/ \lt 40 \mathrm{kV}$
]#

1 $12 \mathrm{E}_{1}+12 \mathrm{E}_{2}$
2 $13 \mathrm{E}_{2}-12 \mathrm{E}_{1}$
3 $12 \mathrm{E}_{2}-13 \mathrm{E}_{1}$
4 $13 \mathrm{E}_{2}+12 \mathrm{E}_{1}$
NUCLEAR PHYSICS

147494 Deuteron is composed of a proton and a neutron. If deuteron breaks, the energy released is
$\left(m_{d}=2.01355 u, m_{p}=1.00728 u, m_{n}=1.00867 u\right.$ and $1 \mathrm{u}=931.5 \mathrm{MeV}$ )

1 $-2.24 \mathrm{MeV}$
2 $+3.23 \mathrm{MeV}$
3 $-5.00 \mathrm{MeV}$
4 $+3.00 \mathrm{MeV}$
NUCLEAR PHYSICS

147495 The mass number of $\mathrm{He}$ is 4 and that for sulphur is 32. The radius of sulphur nuclei is larger than that of helium of

1 $\sqrt{8}$
2 4
3 2
4 8
NUCLEAR PHYSICS

147490 Consider the nuclear reaction $\mathbf{X}^{200} \rightarrow \mathbf{A}^{110}+$ $B^{80}$. If the binding energy per nucleon for $X, A$ and $B$ are 7.4 MeV, 8.2 $\mathrm{MeV}$ and $8.1 \mathrm{MeV}$ respectively, then the energy released in the reaction is

1 $70 \mathrm{MeV}$
2 $200 \mathrm{MeV}$
3 $190 \mathrm{MeV}$
4 $10 \mathrm{MeV}$
5 $1480 \mathrm{MeV}$
NUCLEAR PHYSICS

147491 If the total binding energies of ${ }_{1} \mathrm{H}^{2},{ }_{2} \mathrm{He}^{4},{ }_{26} \mathrm{Fe}^{56}$ and ${ }_{92} \mathrm{U}^{235}$ nuclei are $2.22,28.3,492$ and 1768 $\mathrm{MeV}$ respectively, then identify the most stable nucleus out of the following

1 ${ }_{26} \mathrm{Fe}^{56}$
2 ${ }_{1} \mathrm{H}^{2}$
3 ${ }_{92} \mathrm{U}^{235}$
4 ${ }_{2} \mathrm{He}^{4}$
NUCLEAR PHYSICS

147492 The binding energy per nucleon of $\mathrm{C}^{12}$ is $E_{1}$ and that of $C^{3}$ is $E_{2}$. The energy required to remove one neutron from $\mathrm{C}^{13}$ is
#[Qdiff: Hard, QCat: Numerical Based, examname: BITSAT-2008]
, Mass of proton $\left(\mathrm{M}_{\mathrm{P}}\right)=1.007277 \mathrm{AMU}$
, Mass of neutron $\left(\mathrm{M}_{\mathrm{n}}\right)=1.008665 \mathrm{AMU}$
, Mass of Lithium nucleus $=7.0160005 \mathrm{AMU}$
, $\therefore$ Mass defect $=$ Mass of nucleons - mass of nucleus
, $=\left(3 \mathrm{M}_{\mathrm{P}}+4 \mathrm{M}_{\mathrm{N}}\right)-$ mass of nucleus
, $=(3 \times 1.007277)+(4 \times 1.008665)-7.016005$
, $=0.04048$.
, 167. The binding energy of the innermost electron tungsten is $40 \mathrm{keV}$. To produce characteristic $\mathrm{X}$-rays using a tungsten target in an X-ray tube the potential difference $V$ between the cathode and the anticathode should be -
, (a) $\mathrm{V} \lt 40 \mathrm{kV}$
, (c) $\mathrm{V}>40 \mathrm{kV}$
, (b) $\mathrm{V} \leq 4 \mathrm{kV}$
, (d) $\mathrm{V}>/ \lt 40 \mathrm{kV}$
]#

1 $12 \mathrm{E}_{1}+12 \mathrm{E}_{2}$
2 $13 \mathrm{E}_{2}-12 \mathrm{E}_{1}$
3 $12 \mathrm{E}_{2}-13 \mathrm{E}_{1}$
4 $13 \mathrm{E}_{2}+12 \mathrm{E}_{1}$
NUCLEAR PHYSICS

147494 Deuteron is composed of a proton and a neutron. If deuteron breaks, the energy released is
$\left(m_{d}=2.01355 u, m_{p}=1.00728 u, m_{n}=1.00867 u\right.$ and $1 \mathrm{u}=931.5 \mathrm{MeV}$ )

1 $-2.24 \mathrm{MeV}$
2 $+3.23 \mathrm{MeV}$
3 $-5.00 \mathrm{MeV}$
4 $+3.00 \mathrm{MeV}$
NUCLEAR PHYSICS

147495 The mass number of $\mathrm{He}$ is 4 and that for sulphur is 32. The radius of sulphur nuclei is larger than that of helium of

1 $\sqrt{8}$
2 4
3 2
4 8