147492
The binding energy per nucleon of $\mathrm{C}^{12}$ is $E_{1}$ and that of $C^{3}$ is $E_{2}$. The energy required to remove one neutron from $\mathrm{C}^{13}$ is
#[Qdiff: Hard, QCat: Numerical Based, examname: BITSAT-2008]
, Mass of proton $\left(\mathrm{M}_{\mathrm{P}}\right)=1.007277 \mathrm{AMU}$
, Mass of neutron $\left(\mathrm{M}_{\mathrm{n}}\right)=1.008665 \mathrm{AMU}$
, Mass of Lithium nucleus $=7.0160005 \mathrm{AMU}$
, $\therefore$ Mass defect $=$ Mass of nucleons - mass of nucleus
, $=\left(3 \mathrm{M}_{\mathrm{P}}+4 \mathrm{M}_{\mathrm{N}}\right)-$ mass of nucleus
, $=(3 \times 1.007277)+(4 \times 1.008665)-7.016005$
, $=0.04048$.
, 167. The binding energy of the innermost electron tungsten is $40 \mathrm{keV}$. To produce characteristic $\mathrm{X}$-rays using a tungsten target in an X-ray tube the potential difference $V$ between the cathode and the anticathode should be -
, (a) $\mathrm{V} \lt 40 \mathrm{kV}$
, (c) $\mathrm{V}>40 \mathrm{kV}$
, (b) $\mathrm{V} \leq 4 \mathrm{kV}$
, (d) $\mathrm{V}>/ \lt 40 \mathrm{kV}$
]#
147492
The binding energy per nucleon of $\mathrm{C}^{12}$ is $E_{1}$ and that of $C^{3}$ is $E_{2}$. The energy required to remove one neutron from $\mathrm{C}^{13}$ is
#[Qdiff: Hard, QCat: Numerical Based, examname: BITSAT-2008]
, Mass of proton $\left(\mathrm{M}_{\mathrm{P}}\right)=1.007277 \mathrm{AMU}$
, Mass of neutron $\left(\mathrm{M}_{\mathrm{n}}\right)=1.008665 \mathrm{AMU}$
, Mass of Lithium nucleus $=7.0160005 \mathrm{AMU}$
, $\therefore$ Mass defect $=$ Mass of nucleons - mass of nucleus
, $=\left(3 \mathrm{M}_{\mathrm{P}}+4 \mathrm{M}_{\mathrm{N}}\right)-$ mass of nucleus
, $=(3 \times 1.007277)+(4 \times 1.008665)-7.016005$
, $=0.04048$.
, 167. The binding energy of the innermost electron tungsten is $40 \mathrm{keV}$. To produce characteristic $\mathrm{X}$-rays using a tungsten target in an X-ray tube the potential difference $V$ between the cathode and the anticathode should be -
, (a) $\mathrm{V} \lt 40 \mathrm{kV}$
, (c) $\mathrm{V}>40 \mathrm{kV}$
, (b) $\mathrm{V} \leq 4 \mathrm{kV}$
, (d) $\mathrm{V}>/ \lt 40 \mathrm{kV}$
]#
147492
The binding energy per nucleon of $\mathrm{C}^{12}$ is $E_{1}$ and that of $C^{3}$ is $E_{2}$. The energy required to remove one neutron from $\mathrm{C}^{13}$ is
#[Qdiff: Hard, QCat: Numerical Based, examname: BITSAT-2008]
, Mass of proton $\left(\mathrm{M}_{\mathrm{P}}\right)=1.007277 \mathrm{AMU}$
, Mass of neutron $\left(\mathrm{M}_{\mathrm{n}}\right)=1.008665 \mathrm{AMU}$
, Mass of Lithium nucleus $=7.0160005 \mathrm{AMU}$
, $\therefore$ Mass defect $=$ Mass of nucleons - mass of nucleus
, $=\left(3 \mathrm{M}_{\mathrm{P}}+4 \mathrm{M}_{\mathrm{N}}\right)-$ mass of nucleus
, $=(3 \times 1.007277)+(4 \times 1.008665)-7.016005$
, $=0.04048$.
, 167. The binding energy of the innermost electron tungsten is $40 \mathrm{keV}$. To produce characteristic $\mathrm{X}$-rays using a tungsten target in an X-ray tube the potential difference $V$ between the cathode and the anticathode should be -
, (a) $\mathrm{V} \lt 40 \mathrm{kV}$
, (c) $\mathrm{V}>40 \mathrm{kV}$
, (b) $\mathrm{V} \leq 4 \mathrm{kV}$
, (d) $\mathrm{V}>/ \lt 40 \mathrm{kV}$
]#
147492
The binding energy per nucleon of $\mathrm{C}^{12}$ is $E_{1}$ and that of $C^{3}$ is $E_{2}$. The energy required to remove one neutron from $\mathrm{C}^{13}$ is
#[Qdiff: Hard, QCat: Numerical Based, examname: BITSAT-2008]
, Mass of proton $\left(\mathrm{M}_{\mathrm{P}}\right)=1.007277 \mathrm{AMU}$
, Mass of neutron $\left(\mathrm{M}_{\mathrm{n}}\right)=1.008665 \mathrm{AMU}$
, Mass of Lithium nucleus $=7.0160005 \mathrm{AMU}$
, $\therefore$ Mass defect $=$ Mass of nucleons - mass of nucleus
, $=\left(3 \mathrm{M}_{\mathrm{P}}+4 \mathrm{M}_{\mathrm{N}}\right)-$ mass of nucleus
, $=(3 \times 1.007277)+(4 \times 1.008665)-7.016005$
, $=0.04048$.
, 167. The binding energy of the innermost electron tungsten is $40 \mathrm{keV}$. To produce characteristic $\mathrm{X}$-rays using a tungsten target in an X-ray tube the potential difference $V$ between the cathode and the anticathode should be -
, (a) $\mathrm{V} \lt 40 \mathrm{kV}$
, (c) $\mathrm{V}>40 \mathrm{kV}$
, (b) $\mathrm{V} \leq 4 \mathrm{kV}$
, (d) $\mathrm{V}>/ \lt 40 \mathrm{kV}$
]#
147492
The binding energy per nucleon of $\mathrm{C}^{12}$ is $E_{1}$ and that of $C^{3}$ is $E_{2}$. The energy required to remove one neutron from $\mathrm{C}^{13}$ is
#[Qdiff: Hard, QCat: Numerical Based, examname: BITSAT-2008]
, Mass of proton $\left(\mathrm{M}_{\mathrm{P}}\right)=1.007277 \mathrm{AMU}$
, Mass of neutron $\left(\mathrm{M}_{\mathrm{n}}\right)=1.008665 \mathrm{AMU}$
, Mass of Lithium nucleus $=7.0160005 \mathrm{AMU}$
, $\therefore$ Mass defect $=$ Mass of nucleons - mass of nucleus
, $=\left(3 \mathrm{M}_{\mathrm{P}}+4 \mathrm{M}_{\mathrm{N}}\right)-$ mass of nucleus
, $=(3 \times 1.007277)+(4 \times 1.008665)-7.016005$
, $=0.04048$.
, 167. The binding energy of the innermost electron tungsten is $40 \mathrm{keV}$. To produce characteristic $\mathrm{X}$-rays using a tungsten target in an X-ray tube the potential difference $V$ between the cathode and the anticathode should be -
, (a) $\mathrm{V} \lt 40 \mathrm{kV}$
, (c) $\mathrm{V}>40 \mathrm{kV}$
, (b) $\mathrm{V} \leq 4 \mathrm{kV}$
, (d) $\mathrm{V}>/ \lt 40 \mathrm{kV}$
]#