147474
The difference between the rest mass of the nucleus and the sum of the masses of the nucleons composing a nucleus is known as
#[Qdiff: Hard, QCat: Numerical Based, examname: 147. The binding energy per nucleon for deuteron $\left({ }_{1} \mathrm{H}^{2}\right)$ and helium $\left({ }_{2} \mathrm{He}^{4}\right)$ are $1.1 \mathrm{MeV}$ and 7.0 $\mathrm{MeV}$, [Kerala CEE - 2015,2006, J and K CET- 2001 , $\mathrm{m}_{\mathrm{p}}=$ Mass of Proton i.e. $1.00728 \mathrm{AMU}$
, $\mathrm{m}_{\mathrm{n}}=$ Mass of neutron i.e. $1.00867 \mathrm{AMU}$
, $\mathrm{Z}=$ number of protons
, $\mathrm{N}=$ number of neutrons
, respectively. The energy released when two deuterons fuse to form a helium nucleus is
, (a) $36.2 \mathrm{MeV}$
, (b) $23.6 \mathrm{MeV}$
, (c) $47.2 \mathrm{MeV}$
, (d) $11.8 \mathrm{MeV}$
, (e) $9.31 \mathrm{MeV}$
, UP CPMT-2001]#
147484 The binding energy/nucleon of deuteron $\left({ }_{1} \mathrm{H}^{2}\right)$ and the helium atom $\left({ }_{2} \mathrm{He}^{4}\right)$ are $1.1 \mathrm{MeV}$ and 7 $\mathrm{MeV}$ respectively. If the two deuteron atoms fuse to form a single helium atom, then the energy released is :
147474
The difference between the rest mass of the nucleus and the sum of the masses of the nucleons composing a nucleus is known as
#[Qdiff: Hard, QCat: Numerical Based, examname: 147. The binding energy per nucleon for deuteron $\left({ }_{1} \mathrm{H}^{2}\right)$ and helium $\left({ }_{2} \mathrm{He}^{4}\right)$ are $1.1 \mathrm{MeV}$ and 7.0 $\mathrm{MeV}$, [Kerala CEE - 2015,2006, J and K CET- 2001 , $\mathrm{m}_{\mathrm{p}}=$ Mass of Proton i.e. $1.00728 \mathrm{AMU}$
, $\mathrm{m}_{\mathrm{n}}=$ Mass of neutron i.e. $1.00867 \mathrm{AMU}$
, $\mathrm{Z}=$ number of protons
, $\mathrm{N}=$ number of neutrons
, respectively. The energy released when two deuterons fuse to form a helium nucleus is
, (a) $36.2 \mathrm{MeV}$
, (b) $23.6 \mathrm{MeV}$
, (c) $47.2 \mathrm{MeV}$
, (d) $11.8 \mathrm{MeV}$
, (e) $9.31 \mathrm{MeV}$
, UP CPMT-2001]#
147484 The binding energy/nucleon of deuteron $\left({ }_{1} \mathrm{H}^{2}\right)$ and the helium atom $\left({ }_{2} \mathrm{He}^{4}\right)$ are $1.1 \mathrm{MeV}$ and 7 $\mathrm{MeV}$ respectively. If the two deuteron atoms fuse to form a single helium atom, then the energy released is :
147474
The difference between the rest mass of the nucleus and the sum of the masses of the nucleons composing a nucleus is known as
#[Qdiff: Hard, QCat: Numerical Based, examname: 147. The binding energy per nucleon for deuteron $\left({ }_{1} \mathrm{H}^{2}\right)$ and helium $\left({ }_{2} \mathrm{He}^{4}\right)$ are $1.1 \mathrm{MeV}$ and 7.0 $\mathrm{MeV}$, [Kerala CEE - 2015,2006, J and K CET- 2001 , $\mathrm{m}_{\mathrm{p}}=$ Mass of Proton i.e. $1.00728 \mathrm{AMU}$
, $\mathrm{m}_{\mathrm{n}}=$ Mass of neutron i.e. $1.00867 \mathrm{AMU}$
, $\mathrm{Z}=$ number of protons
, $\mathrm{N}=$ number of neutrons
, respectively. The energy released when two deuterons fuse to form a helium nucleus is
, (a) $36.2 \mathrm{MeV}$
, (b) $23.6 \mathrm{MeV}$
, (c) $47.2 \mathrm{MeV}$
, (d) $11.8 \mathrm{MeV}$
, (e) $9.31 \mathrm{MeV}$
, UP CPMT-2001]#
147484 The binding energy/nucleon of deuteron $\left({ }_{1} \mathrm{H}^{2}\right)$ and the helium atom $\left({ }_{2} \mathrm{He}^{4}\right)$ are $1.1 \mathrm{MeV}$ and 7 $\mathrm{MeV}$ respectively. If the two deuteron atoms fuse to form a single helium atom, then the energy released is :
147474
The difference between the rest mass of the nucleus and the sum of the masses of the nucleons composing a nucleus is known as
#[Qdiff: Hard, QCat: Numerical Based, examname: 147. The binding energy per nucleon for deuteron $\left({ }_{1} \mathrm{H}^{2}\right)$ and helium $\left({ }_{2} \mathrm{He}^{4}\right)$ are $1.1 \mathrm{MeV}$ and 7.0 $\mathrm{MeV}$, [Kerala CEE - 2015,2006, J and K CET- 2001 , $\mathrm{m}_{\mathrm{p}}=$ Mass of Proton i.e. $1.00728 \mathrm{AMU}$
, $\mathrm{m}_{\mathrm{n}}=$ Mass of neutron i.e. $1.00867 \mathrm{AMU}$
, $\mathrm{Z}=$ number of protons
, $\mathrm{N}=$ number of neutrons
, respectively. The energy released when two deuterons fuse to form a helium nucleus is
, (a) $36.2 \mathrm{MeV}$
, (b) $23.6 \mathrm{MeV}$
, (c) $47.2 \mathrm{MeV}$
, (d) $11.8 \mathrm{MeV}$
, (e) $9.31 \mathrm{MeV}$
, UP CPMT-2001]#
147484 The binding energy/nucleon of deuteron $\left({ }_{1} \mathrm{H}^{2}\right)$ and the helium atom $\left({ }_{2} \mathrm{He}^{4}\right)$ are $1.1 \mathrm{MeV}$ and 7 $\mathrm{MeV}$ respectively. If the two deuteron atoms fuse to form a single helium atom, then the energy released is :