142573 A photosensitive metallic surface has work function, $h v_{0}$. If photons of energy $2 h v_{0}$ fall on this surface, the electrons come out with a maximum velocity of $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$. When the photon energy is increased to $5 \mathrm{~h} v_{0}$, then maximum velocity of photoelectrons will be
142574
The kinetic energy of an electron is $5 \mathrm{eV}$. Calculate the de-Broglie wavelength associated with it is.
$\left(\text { Take } \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}\right.$
$\text { and } \left.\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)$
142573 A photosensitive metallic surface has work function, $h v_{0}$. If photons of energy $2 h v_{0}$ fall on this surface, the electrons come out with a maximum velocity of $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$. When the photon energy is increased to $5 \mathrm{~h} v_{0}$, then maximum velocity of photoelectrons will be
142574
The kinetic energy of an electron is $5 \mathrm{eV}$. Calculate the de-Broglie wavelength associated with it is.
$\left(\text { Take } \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}\right.$
$\text { and } \left.\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)$
142573 A photosensitive metallic surface has work function, $h v_{0}$. If photons of energy $2 h v_{0}$ fall on this surface, the electrons come out with a maximum velocity of $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$. When the photon energy is increased to $5 \mathrm{~h} v_{0}$, then maximum velocity of photoelectrons will be
142574
The kinetic energy of an electron is $5 \mathrm{eV}$. Calculate the de-Broglie wavelength associated with it is.
$\left(\text { Take } \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}\right.$
$\text { and } \left.\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)$
142573 A photosensitive metallic surface has work function, $h v_{0}$. If photons of energy $2 h v_{0}$ fall on this surface, the electrons come out with a maximum velocity of $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$. When the photon energy is increased to $5 \mathrm{~h} v_{0}$, then maximum velocity of photoelectrons will be
142574
The kinetic energy of an electron is $5 \mathrm{eV}$. Calculate the de-Broglie wavelength associated with it is.
$\left(\text { Take } \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}\right.$
$\text { and } \left.\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)$