Wave Nature Of Light Of Matter (de-Broglie)
Dual nature of radiation and Matter

142571 The $21 \mathrm{~cm}$ radiowave emitted by hydrogen in interstellar space is due to the interaction called the hyperfine interaction in atomic hydrogen. The energy of the emitted wave is nearly

1 $10^{-17} \mathrm{~J}$
2 $1 \mathrm{~J}$
3 $7 \times 10^{-6} \mathrm{~J}$
4 $10^{-24} \mathrm{~J}$
Dual nature of radiation and Matter

142572 A light source is at a distance $d$ from a photoelectric cell, then the number of photoelectrons emitted from the cell is $n$. If the distance of light source and cell is reduced to half, then the number of photoelectrons emitted will become

1 $\frac{\mathrm{n}}{2}$
2 $2 \mathrm{n}$
3 $4 \mathrm{n}$
4 $n$
Dual nature of radiation and Matter

142573 A photosensitive metallic surface has work function, $h v_{0}$. If photons of energy $2 h v_{0}$ fall on this surface, the electrons come out with a maximum velocity of $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$. When the photon energy is increased to $5 \mathrm{~h} v_{0}$, then maximum velocity of photoelectrons will be

1 $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$
2 $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$
3 $8 \times 10^{5} \mathrm{~m} / \mathrm{s}$
4 $8 \times 10^{6} \mathrm{~m} / \mathrm{s}$
Dual nature of radiation and Matter

142574 The kinetic energy of an electron is $5 \mathrm{eV}$. Calculate the de-Broglie wavelength associated with it is.
$\left(\text { Take } \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}\right.$
$\text { and } \left.\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)$

1 $5.47 \AA$
2 $10.9 \AA$
3 $2.7 \AA$
4 $3.82 \AA$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142571 The $21 \mathrm{~cm}$ radiowave emitted by hydrogen in interstellar space is due to the interaction called the hyperfine interaction in atomic hydrogen. The energy of the emitted wave is nearly

1 $10^{-17} \mathrm{~J}$
2 $1 \mathrm{~J}$
3 $7 \times 10^{-6} \mathrm{~J}$
4 $10^{-24} \mathrm{~J}$
Dual nature of radiation and Matter

142572 A light source is at a distance $d$ from a photoelectric cell, then the number of photoelectrons emitted from the cell is $n$. If the distance of light source and cell is reduced to half, then the number of photoelectrons emitted will become

1 $\frac{\mathrm{n}}{2}$
2 $2 \mathrm{n}$
3 $4 \mathrm{n}$
4 $n$
Dual nature of radiation and Matter

142573 A photosensitive metallic surface has work function, $h v_{0}$. If photons of energy $2 h v_{0}$ fall on this surface, the electrons come out with a maximum velocity of $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$. When the photon energy is increased to $5 \mathrm{~h} v_{0}$, then maximum velocity of photoelectrons will be

1 $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$
2 $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$
3 $8 \times 10^{5} \mathrm{~m} / \mathrm{s}$
4 $8 \times 10^{6} \mathrm{~m} / \mathrm{s}$
Dual nature of radiation and Matter

142574 The kinetic energy of an electron is $5 \mathrm{eV}$. Calculate the de-Broglie wavelength associated with it is.
$\left(\text { Take } \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}\right.$
$\text { and } \left.\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)$

1 $5.47 \AA$
2 $10.9 \AA$
3 $2.7 \AA$
4 $3.82 \AA$
Dual nature of radiation and Matter

142571 The $21 \mathrm{~cm}$ radiowave emitted by hydrogen in interstellar space is due to the interaction called the hyperfine interaction in atomic hydrogen. The energy of the emitted wave is nearly

1 $10^{-17} \mathrm{~J}$
2 $1 \mathrm{~J}$
3 $7 \times 10^{-6} \mathrm{~J}$
4 $10^{-24} \mathrm{~J}$
Dual nature of radiation and Matter

142572 A light source is at a distance $d$ from a photoelectric cell, then the number of photoelectrons emitted from the cell is $n$. If the distance of light source and cell is reduced to half, then the number of photoelectrons emitted will become

1 $\frac{\mathrm{n}}{2}$
2 $2 \mathrm{n}$
3 $4 \mathrm{n}$
4 $n$
Dual nature of radiation and Matter

142573 A photosensitive metallic surface has work function, $h v_{0}$. If photons of energy $2 h v_{0}$ fall on this surface, the electrons come out with a maximum velocity of $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$. When the photon energy is increased to $5 \mathrm{~h} v_{0}$, then maximum velocity of photoelectrons will be

1 $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$
2 $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$
3 $8 \times 10^{5} \mathrm{~m} / \mathrm{s}$
4 $8 \times 10^{6} \mathrm{~m} / \mathrm{s}$
Dual nature of radiation and Matter

142574 The kinetic energy of an electron is $5 \mathrm{eV}$. Calculate the de-Broglie wavelength associated with it is.
$\left(\text { Take } \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}\right.$
$\text { and } \left.\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)$

1 $5.47 \AA$
2 $10.9 \AA$
3 $2.7 \AA$
4 $3.82 \AA$
Dual nature of radiation and Matter

142571 The $21 \mathrm{~cm}$ radiowave emitted by hydrogen in interstellar space is due to the interaction called the hyperfine interaction in atomic hydrogen. The energy of the emitted wave is nearly

1 $10^{-17} \mathrm{~J}$
2 $1 \mathrm{~J}$
3 $7 \times 10^{-6} \mathrm{~J}$
4 $10^{-24} \mathrm{~J}$
Dual nature of radiation and Matter

142572 A light source is at a distance $d$ from a photoelectric cell, then the number of photoelectrons emitted from the cell is $n$. If the distance of light source and cell is reduced to half, then the number of photoelectrons emitted will become

1 $\frac{\mathrm{n}}{2}$
2 $2 \mathrm{n}$
3 $4 \mathrm{n}$
4 $n$
Dual nature of radiation and Matter

142573 A photosensitive metallic surface has work function, $h v_{0}$. If photons of energy $2 h v_{0}$ fall on this surface, the electrons come out with a maximum velocity of $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$. When the photon energy is increased to $5 \mathrm{~h} v_{0}$, then maximum velocity of photoelectrons will be

1 $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$
2 $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$
3 $8 \times 10^{5} \mathrm{~m} / \mathrm{s}$
4 $8 \times 10^{6} \mathrm{~m} / \mathrm{s}$
Dual nature of radiation and Matter

142574 The kinetic energy of an electron is $5 \mathrm{eV}$. Calculate the de-Broglie wavelength associated with it is.
$\left(\text { Take } \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}\right.$
$\text { and } \left.\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)$

1 $5.47 \AA$
2 $10.9 \AA$
3 $2.7 \AA$
4 $3.82 \AA$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here