142567
A source $S_{1}$ is producing. $10^{15}$ photons of wavelength $5000 \AA$. Another source $S_{2}$ is producing $1.02 \times 10^{15}$ photons per second of wavelength $5100 \AA$. Then, (power of $\mathrm{S}_{2}$ ) / (power of $S_{1}$ ) is equal to
142568
Monochromatic light of wavelength $667 \mathrm{~nm}$ is produced by a helium neon laser. The power emitted is $9 \mathrm{~mW}$. The number of photons arriving per second on the average at a target irradiated by this beam is
1 $9 \times 10^{17}$
2 $3 \times 10^{16}$
3 $9 \times 10^{15}$
4 $3 \times 10^{19}$
Explanation:
B Given, $\lambda=667 \mathrm{~nm}=667 \times 10^{-9} \mathrm{~m}$ $\mathrm{P}=9 \mathrm{~mW}=9 \times 10^{-3} \mathrm{~W}$ Number of photon per second $\mathrm{P}=\mathrm{N} \cdot \frac{\mathrm{hc}}{\lambda}$ $\mathrm{N}=\frac{\mathrm{P} \lambda}{\mathrm{hc}}=\frac{9 \times 10^{-3} \times 667 \times 10^{-9}}{6.6 \times 10^{-34} \times 3 \times 10^{8}}$ $\mathrm{~N}=3 \times 10^{16} / \mathrm{s}$
AIPMT - 2009
Dual nature of radiation and Matter
142569
Monochromatic light of frequency $6.0 \times 10^{14}$ $\mathrm{Hz}$ is produced by a laser. The power emitted is $2 \times 10^{-3} \mathrm{~W}$. the number of photons emitted, on the average, by the source per second is
1 $5 \times 10^{15}$
2 $5 \times 10^{18}$
3 $5 \times 10^{17}$
4 $5 \times 10^{14}$
Explanation:
A Given, Frequency $(v)=6.0 \times 10^{14} \mathrm{~Hz}$ Power $(\mathrm{P})=2 \times 10^{-3} \mathrm{~W}$ Number of photon emitted per second $\mathrm{N}=\frac{\mathrm{P}}{\mathrm{E}}=\frac{\mathrm{P}}{\mathrm{h} v}$ $\mathrm{~N}=\frac{2 \times 10^{-3}}{6.63 \times 10^{-34} \times 6 \times 10^{14}}$ $\mathrm{~N}=5.027 \times 10^{15}$ $\mathrm{~N} \square 5 \times 10^{15}$
AIPMT - 2007
Dual nature of radiation and Matter
142570
The momentum of a photon of energy $1 \mathrm{MeV}$ in $\mathrm{kg} \mathrm{m} / \mathbf{s}$, will be
142567
A source $S_{1}$ is producing. $10^{15}$ photons of wavelength $5000 \AA$. Another source $S_{2}$ is producing $1.02 \times 10^{15}$ photons per second of wavelength $5100 \AA$. Then, (power of $\mathrm{S}_{2}$ ) / (power of $S_{1}$ ) is equal to
142568
Monochromatic light of wavelength $667 \mathrm{~nm}$ is produced by a helium neon laser. The power emitted is $9 \mathrm{~mW}$. The number of photons arriving per second on the average at a target irradiated by this beam is
1 $9 \times 10^{17}$
2 $3 \times 10^{16}$
3 $9 \times 10^{15}$
4 $3 \times 10^{19}$
Explanation:
B Given, $\lambda=667 \mathrm{~nm}=667 \times 10^{-9} \mathrm{~m}$ $\mathrm{P}=9 \mathrm{~mW}=9 \times 10^{-3} \mathrm{~W}$ Number of photon per second $\mathrm{P}=\mathrm{N} \cdot \frac{\mathrm{hc}}{\lambda}$ $\mathrm{N}=\frac{\mathrm{P} \lambda}{\mathrm{hc}}=\frac{9 \times 10^{-3} \times 667 \times 10^{-9}}{6.6 \times 10^{-34} \times 3 \times 10^{8}}$ $\mathrm{~N}=3 \times 10^{16} / \mathrm{s}$
AIPMT - 2009
Dual nature of radiation and Matter
142569
Monochromatic light of frequency $6.0 \times 10^{14}$ $\mathrm{Hz}$ is produced by a laser. The power emitted is $2 \times 10^{-3} \mathrm{~W}$. the number of photons emitted, on the average, by the source per second is
1 $5 \times 10^{15}$
2 $5 \times 10^{18}$
3 $5 \times 10^{17}$
4 $5 \times 10^{14}$
Explanation:
A Given, Frequency $(v)=6.0 \times 10^{14} \mathrm{~Hz}$ Power $(\mathrm{P})=2 \times 10^{-3} \mathrm{~W}$ Number of photon emitted per second $\mathrm{N}=\frac{\mathrm{P}}{\mathrm{E}}=\frac{\mathrm{P}}{\mathrm{h} v}$ $\mathrm{~N}=\frac{2 \times 10^{-3}}{6.63 \times 10^{-34} \times 6 \times 10^{14}}$ $\mathrm{~N}=5.027 \times 10^{15}$ $\mathrm{~N} \square 5 \times 10^{15}$
AIPMT - 2007
Dual nature of radiation and Matter
142570
The momentum of a photon of energy $1 \mathrm{MeV}$ in $\mathrm{kg} \mathrm{m} / \mathbf{s}$, will be
142567
A source $S_{1}$ is producing. $10^{15}$ photons of wavelength $5000 \AA$. Another source $S_{2}$ is producing $1.02 \times 10^{15}$ photons per second of wavelength $5100 \AA$. Then, (power of $\mathrm{S}_{2}$ ) / (power of $S_{1}$ ) is equal to
142568
Monochromatic light of wavelength $667 \mathrm{~nm}$ is produced by a helium neon laser. The power emitted is $9 \mathrm{~mW}$. The number of photons arriving per second on the average at a target irradiated by this beam is
1 $9 \times 10^{17}$
2 $3 \times 10^{16}$
3 $9 \times 10^{15}$
4 $3 \times 10^{19}$
Explanation:
B Given, $\lambda=667 \mathrm{~nm}=667 \times 10^{-9} \mathrm{~m}$ $\mathrm{P}=9 \mathrm{~mW}=9 \times 10^{-3} \mathrm{~W}$ Number of photon per second $\mathrm{P}=\mathrm{N} \cdot \frac{\mathrm{hc}}{\lambda}$ $\mathrm{N}=\frac{\mathrm{P} \lambda}{\mathrm{hc}}=\frac{9 \times 10^{-3} \times 667 \times 10^{-9}}{6.6 \times 10^{-34} \times 3 \times 10^{8}}$ $\mathrm{~N}=3 \times 10^{16} / \mathrm{s}$
AIPMT - 2009
Dual nature of radiation and Matter
142569
Monochromatic light of frequency $6.0 \times 10^{14}$ $\mathrm{Hz}$ is produced by a laser. The power emitted is $2 \times 10^{-3} \mathrm{~W}$. the number of photons emitted, on the average, by the source per second is
1 $5 \times 10^{15}$
2 $5 \times 10^{18}$
3 $5 \times 10^{17}$
4 $5 \times 10^{14}$
Explanation:
A Given, Frequency $(v)=6.0 \times 10^{14} \mathrm{~Hz}$ Power $(\mathrm{P})=2 \times 10^{-3} \mathrm{~W}$ Number of photon emitted per second $\mathrm{N}=\frac{\mathrm{P}}{\mathrm{E}}=\frac{\mathrm{P}}{\mathrm{h} v}$ $\mathrm{~N}=\frac{2 \times 10^{-3}}{6.63 \times 10^{-34} \times 6 \times 10^{14}}$ $\mathrm{~N}=5.027 \times 10^{15}$ $\mathrm{~N} \square 5 \times 10^{15}$
AIPMT - 2007
Dual nature of radiation and Matter
142570
The momentum of a photon of energy $1 \mathrm{MeV}$ in $\mathrm{kg} \mathrm{m} / \mathbf{s}$, will be
142567
A source $S_{1}$ is producing. $10^{15}$ photons of wavelength $5000 \AA$. Another source $S_{2}$ is producing $1.02 \times 10^{15}$ photons per second of wavelength $5100 \AA$. Then, (power of $\mathrm{S}_{2}$ ) / (power of $S_{1}$ ) is equal to
142568
Monochromatic light of wavelength $667 \mathrm{~nm}$ is produced by a helium neon laser. The power emitted is $9 \mathrm{~mW}$. The number of photons arriving per second on the average at a target irradiated by this beam is
1 $9 \times 10^{17}$
2 $3 \times 10^{16}$
3 $9 \times 10^{15}$
4 $3 \times 10^{19}$
Explanation:
B Given, $\lambda=667 \mathrm{~nm}=667 \times 10^{-9} \mathrm{~m}$ $\mathrm{P}=9 \mathrm{~mW}=9 \times 10^{-3} \mathrm{~W}$ Number of photon per second $\mathrm{P}=\mathrm{N} \cdot \frac{\mathrm{hc}}{\lambda}$ $\mathrm{N}=\frac{\mathrm{P} \lambda}{\mathrm{hc}}=\frac{9 \times 10^{-3} \times 667 \times 10^{-9}}{6.6 \times 10^{-34} \times 3 \times 10^{8}}$ $\mathrm{~N}=3 \times 10^{16} / \mathrm{s}$
AIPMT - 2009
Dual nature of radiation and Matter
142569
Monochromatic light of frequency $6.0 \times 10^{14}$ $\mathrm{Hz}$ is produced by a laser. The power emitted is $2 \times 10^{-3} \mathrm{~W}$. the number of photons emitted, on the average, by the source per second is
1 $5 \times 10^{15}$
2 $5 \times 10^{18}$
3 $5 \times 10^{17}$
4 $5 \times 10^{14}$
Explanation:
A Given, Frequency $(v)=6.0 \times 10^{14} \mathrm{~Hz}$ Power $(\mathrm{P})=2 \times 10^{-3} \mathrm{~W}$ Number of photon emitted per second $\mathrm{N}=\frac{\mathrm{P}}{\mathrm{E}}=\frac{\mathrm{P}}{\mathrm{h} v}$ $\mathrm{~N}=\frac{2 \times 10^{-3}}{6.63 \times 10^{-34} \times 6 \times 10^{14}}$ $\mathrm{~N}=5.027 \times 10^{15}$ $\mathrm{~N} \square 5 \times 10^{15}$
AIPMT - 2007
Dual nature of radiation and Matter
142570
The momentum of a photon of energy $1 \mathrm{MeV}$ in $\mathrm{kg} \mathrm{m} / \mathbf{s}$, will be