142494
If $10000 \mathrm{~V}$ is applied across an $\mathrm{X}$-ray tube, what will be the ratio of de-Broglie wavelength of the incident electrons to the shortest wavelength $X$-ray produced?
$\left(\frac{\mathrm{e}}{\mathrm{m}}\right.$ for electron $\left.=1.8 \times 10^{11} \mathrm{C} \mathrm{kg}^{-1}\right)$
142494
If $10000 \mathrm{~V}$ is applied across an $\mathrm{X}$-ray tube, what will be the ratio of de-Broglie wavelength of the incident electrons to the shortest wavelength $X$-ray produced?
$\left(\frac{\mathrm{e}}{\mathrm{m}}\right.$ for electron $\left.=1.8 \times 10^{11} \mathrm{C} \mathrm{kg}^{-1}\right)$
142494
If $10000 \mathrm{~V}$ is applied across an $\mathrm{X}$-ray tube, what will be the ratio of de-Broglie wavelength of the incident electrons to the shortest wavelength $X$-ray produced?
$\left(\frac{\mathrm{e}}{\mathrm{m}}\right.$ for electron $\left.=1.8 \times 10^{11} \mathrm{C} \mathrm{kg}^{-1}\right)$
142494
If $10000 \mathrm{~V}$ is applied across an $\mathrm{X}$-ray tube, what will be the ratio of de-Broglie wavelength of the incident electrons to the shortest wavelength $X$-ray produced?
$\left(\frac{\mathrm{e}}{\mathrm{m}}\right.$ for electron $\left.=1.8 \times 10^{11} \mathrm{C} \mathrm{kg}^{-1}\right)$
142494
If $10000 \mathrm{~V}$ is applied across an $\mathrm{X}$-ray tube, what will be the ratio of de-Broglie wavelength of the incident electrons to the shortest wavelength $X$-ray produced?
$\left(\frac{\mathrm{e}}{\mathrm{m}}\right.$ for electron $\left.=1.8 \times 10^{11} \mathrm{C} \mathrm{kg}^{-1}\right)$