Wave Nature Of Light Of Matter (de-Broglie)
Dual nature of radiation and Matter

142489 The distance of closest approach of an $\alpha$ particle fired towards a nucleus with momentum $p$, is $r$. If the momentum of the $\alpha$ particle is $2 \mathrm{p}$, the corresponding distance of closest approach is

1 $\frac{r}{2}$
2 $2 \mathrm{r}$
3 $4 \mathrm{r}$
4 $\frac{r}{8}$
5 $\frac{r}{4}$
Dual nature of radiation and Matter

142490 A proton, a deuteron and an alpha particle with the same kinetic energy enter a region of uniform magnetic field $B$ at right angles to the field. The ratio of the radii of their circular paths is :

1 $1: 1: 1$
2 $1: \sqrt{2}: \sqrt{2}$
3 $\sqrt{2}: 1: 1$
4 $\sqrt{2}: \sqrt{2}: 1$
5 $1: \sqrt{2}: 1$
Dual nature of radiation and Matter

142491 The ratio of the de-Broglie wavelength of an $\alpha$ particle and a proton of same kinetic energy is:

1 $1: 2$
2 $1: 1$
3 $1: \sqrt{2}$
4 $4: 1$
5 $\sqrt{2}: 1$
Dual nature of radiation and Matter

142492 The wave length of a $1 \mathrm{keV}$ photon is $1.24 \mathrm{~nm}$. The frequency of $1 \mathrm{MeV}$ photon is:

1 $1.24 \times 10^{15} \mathrm{~Hz}$
2 $2.4 \times 10^{20} \mathrm{~Hz}$
3 $1.24 \times 10^{18} \mathrm{~Hz}$
4 $2.4 \times 10^{24} \mathrm{~Hz}$
5 $2.4 \times 10^{15} \mathrm{~Hz}$
Dual nature of radiation and Matter

142489 The distance of closest approach of an $\alpha$ particle fired towards a nucleus with momentum $p$, is $r$. If the momentum of the $\alpha$ particle is $2 \mathrm{p}$, the corresponding distance of closest approach is

1 $\frac{r}{2}$
2 $2 \mathrm{r}$
3 $4 \mathrm{r}$
4 $\frac{r}{8}$
5 $\frac{r}{4}$
Dual nature of radiation and Matter

142490 A proton, a deuteron and an alpha particle with the same kinetic energy enter a region of uniform magnetic field $B$ at right angles to the field. The ratio of the radii of their circular paths is :

1 $1: 1: 1$
2 $1: \sqrt{2}: \sqrt{2}$
3 $\sqrt{2}: 1: 1$
4 $\sqrt{2}: \sqrt{2}: 1$
5 $1: \sqrt{2}: 1$
Dual nature of radiation and Matter

142491 The ratio of the de-Broglie wavelength of an $\alpha$ particle and a proton of same kinetic energy is:

1 $1: 2$
2 $1: 1$
3 $1: \sqrt{2}$
4 $4: 1$
5 $\sqrt{2}: 1$
Dual nature of radiation and Matter

142492 The wave length of a $1 \mathrm{keV}$ photon is $1.24 \mathrm{~nm}$. The frequency of $1 \mathrm{MeV}$ photon is:

1 $1.24 \times 10^{15} \mathrm{~Hz}$
2 $2.4 \times 10^{20} \mathrm{~Hz}$
3 $1.24 \times 10^{18} \mathrm{~Hz}$
4 $2.4 \times 10^{24} \mathrm{~Hz}$
5 $2.4 \times 10^{15} \mathrm{~Hz}$
Dual nature of radiation and Matter

142489 The distance of closest approach of an $\alpha$ particle fired towards a nucleus with momentum $p$, is $r$. If the momentum of the $\alpha$ particle is $2 \mathrm{p}$, the corresponding distance of closest approach is

1 $\frac{r}{2}$
2 $2 \mathrm{r}$
3 $4 \mathrm{r}$
4 $\frac{r}{8}$
5 $\frac{r}{4}$
Dual nature of radiation and Matter

142490 A proton, a deuteron and an alpha particle with the same kinetic energy enter a region of uniform magnetic field $B$ at right angles to the field. The ratio of the radii of their circular paths is :

1 $1: 1: 1$
2 $1: \sqrt{2}: \sqrt{2}$
3 $\sqrt{2}: 1: 1$
4 $\sqrt{2}: \sqrt{2}: 1$
5 $1: \sqrt{2}: 1$
Dual nature of radiation and Matter

142491 The ratio of the de-Broglie wavelength of an $\alpha$ particle and a proton of same kinetic energy is:

1 $1: 2$
2 $1: 1$
3 $1: \sqrt{2}$
4 $4: 1$
5 $\sqrt{2}: 1$
Dual nature of radiation and Matter

142492 The wave length of a $1 \mathrm{keV}$ photon is $1.24 \mathrm{~nm}$. The frequency of $1 \mathrm{MeV}$ photon is:

1 $1.24 \times 10^{15} \mathrm{~Hz}$
2 $2.4 \times 10^{20} \mathrm{~Hz}$
3 $1.24 \times 10^{18} \mathrm{~Hz}$
4 $2.4 \times 10^{24} \mathrm{~Hz}$
5 $2.4 \times 10^{15} \mathrm{~Hz}$
Dual nature of radiation and Matter

142489 The distance of closest approach of an $\alpha$ particle fired towards a nucleus with momentum $p$, is $r$. If the momentum of the $\alpha$ particle is $2 \mathrm{p}$, the corresponding distance of closest approach is

1 $\frac{r}{2}$
2 $2 \mathrm{r}$
3 $4 \mathrm{r}$
4 $\frac{r}{8}$
5 $\frac{r}{4}$
Dual nature of radiation and Matter

142490 A proton, a deuteron and an alpha particle with the same kinetic energy enter a region of uniform magnetic field $B$ at right angles to the field. The ratio of the radii of their circular paths is :

1 $1: 1: 1$
2 $1: \sqrt{2}: \sqrt{2}$
3 $\sqrt{2}: 1: 1$
4 $\sqrt{2}: \sqrt{2}: 1$
5 $1: \sqrt{2}: 1$
Dual nature of radiation and Matter

142491 The ratio of the de-Broglie wavelength of an $\alpha$ particle and a proton of same kinetic energy is:

1 $1: 2$
2 $1: 1$
3 $1: \sqrt{2}$
4 $4: 1$
5 $\sqrt{2}: 1$
Dual nature of radiation and Matter

142492 The wave length of a $1 \mathrm{keV}$ photon is $1.24 \mathrm{~nm}$. The frequency of $1 \mathrm{MeV}$ photon is:

1 $1.24 \times 10^{15} \mathrm{~Hz}$
2 $2.4 \times 10^{20} \mathrm{~Hz}$
3 $1.24 \times 10^{18} \mathrm{~Hz}$
4 $2.4 \times 10^{24} \mathrm{~Hz}$
5 $2.4 \times 10^{15} \mathrm{~Hz}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here