Wave Nature Of Light Of Matter (de-Broglie)
Dual nature of radiation and Matter

142504 A body of mass $100 \mathrm{~g}$ moves at the speed of 36 $\mathrm{km} / \mathrm{hr}$. The de Broglie wave length related to it is of the order

1 $10^{-14}$
2 $10^{-24}$
3 $10^{-34}$
4 $10^{-44}$ $\mathrm{m}\left(\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}\right)$
Dual nature of radiation and Matter

142505 If the kinetic energy of free electron is made double, the new de-Broglie wave length will be times that of initial wave length.

1 $\sqrt{2}$
2 $\frac{1}{\sqrt{2}}$
3 2
4 $\frac{1}{2}$
Dual nature of radiation and Matter

142506 The de-Broglie wavelength of neutrons in thermal equilibrium at temperature $T$ is

1 $\frac{3.08}{\sqrt{\mathrm{T}}} \AA$
2 $\frac{0.308}{\sqrt{\mathrm{T}}} \AA$
3 $\frac{0.0308}{\sqrt{\mathrm{T}}} \AA$
4 $\frac{30.8}{\sqrt{\mathrm{T}}} \AA$
Dual nature of radiation and Matter

142507 The de-Broglie wavelength of an electron, $\alpha$ particle and a proton all having the same kinetic energy is respectively given as $\lambda_{\mathrm{e}}, \lambda_{\alpha}$ and $\lambda_{\mathrm{p}}$. Then which of the following is not true?

1 $\lambda_{\mathrm{e}} \lt \lambda_{\mathrm{p}}$
2 $\lambda_{\mathrm{p}}>\lambda_{\alpha}$
3 $\lambda_{\mathrm{e}}>\lambda_{\alpha}$
4 $\lambda_{\alpha} \lt \lambda_{\mathrm{p}} \lt \lambda_{\mathrm{e}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142504 A body of mass $100 \mathrm{~g}$ moves at the speed of 36 $\mathrm{km} / \mathrm{hr}$. The de Broglie wave length related to it is of the order

1 $10^{-14}$
2 $10^{-24}$
3 $10^{-34}$
4 $10^{-44}$ $\mathrm{m}\left(\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}\right)$
Dual nature of radiation and Matter

142505 If the kinetic energy of free electron is made double, the new de-Broglie wave length will be times that of initial wave length.

1 $\sqrt{2}$
2 $\frac{1}{\sqrt{2}}$
3 2
4 $\frac{1}{2}$
Dual nature of radiation and Matter

142506 The de-Broglie wavelength of neutrons in thermal equilibrium at temperature $T$ is

1 $\frac{3.08}{\sqrt{\mathrm{T}}} \AA$
2 $\frac{0.308}{\sqrt{\mathrm{T}}} \AA$
3 $\frac{0.0308}{\sqrt{\mathrm{T}}} \AA$
4 $\frac{30.8}{\sqrt{\mathrm{T}}} \AA$
Dual nature of radiation and Matter

142507 The de-Broglie wavelength of an electron, $\alpha$ particle and a proton all having the same kinetic energy is respectively given as $\lambda_{\mathrm{e}}, \lambda_{\alpha}$ and $\lambda_{\mathrm{p}}$. Then which of the following is not true?

1 $\lambda_{\mathrm{e}} \lt \lambda_{\mathrm{p}}$
2 $\lambda_{\mathrm{p}}>\lambda_{\alpha}$
3 $\lambda_{\mathrm{e}}>\lambda_{\alpha}$
4 $\lambda_{\alpha} \lt \lambda_{\mathrm{p}} \lt \lambda_{\mathrm{e}}$
Dual nature of radiation and Matter

142504 A body of mass $100 \mathrm{~g}$ moves at the speed of 36 $\mathrm{km} / \mathrm{hr}$. The de Broglie wave length related to it is of the order

1 $10^{-14}$
2 $10^{-24}$
3 $10^{-34}$
4 $10^{-44}$ $\mathrm{m}\left(\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}\right)$
Dual nature of radiation and Matter

142505 If the kinetic energy of free electron is made double, the new de-Broglie wave length will be times that of initial wave length.

1 $\sqrt{2}$
2 $\frac{1}{\sqrt{2}}$
3 2
4 $\frac{1}{2}$
Dual nature of radiation and Matter

142506 The de-Broglie wavelength of neutrons in thermal equilibrium at temperature $T$ is

1 $\frac{3.08}{\sqrt{\mathrm{T}}} \AA$
2 $\frac{0.308}{\sqrt{\mathrm{T}}} \AA$
3 $\frac{0.0308}{\sqrt{\mathrm{T}}} \AA$
4 $\frac{30.8}{\sqrt{\mathrm{T}}} \AA$
Dual nature of radiation and Matter

142507 The de-Broglie wavelength of an electron, $\alpha$ particle and a proton all having the same kinetic energy is respectively given as $\lambda_{\mathrm{e}}, \lambda_{\alpha}$ and $\lambda_{\mathrm{p}}$. Then which of the following is not true?

1 $\lambda_{\mathrm{e}} \lt \lambda_{\mathrm{p}}$
2 $\lambda_{\mathrm{p}}>\lambda_{\alpha}$
3 $\lambda_{\mathrm{e}}>\lambda_{\alpha}$
4 $\lambda_{\alpha} \lt \lambda_{\mathrm{p}} \lt \lambda_{\mathrm{e}}$
Dual nature of radiation and Matter

142504 A body of mass $100 \mathrm{~g}$ moves at the speed of 36 $\mathrm{km} / \mathrm{hr}$. The de Broglie wave length related to it is of the order

1 $10^{-14}$
2 $10^{-24}$
3 $10^{-34}$
4 $10^{-44}$ $\mathrm{m}\left(\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}\right)$
Dual nature of radiation and Matter

142505 If the kinetic energy of free electron is made double, the new de-Broglie wave length will be times that of initial wave length.

1 $\sqrt{2}$
2 $\frac{1}{\sqrt{2}}$
3 2
4 $\frac{1}{2}$
Dual nature of radiation and Matter

142506 The de-Broglie wavelength of neutrons in thermal equilibrium at temperature $T$ is

1 $\frac{3.08}{\sqrt{\mathrm{T}}} \AA$
2 $\frac{0.308}{\sqrt{\mathrm{T}}} \AA$
3 $\frac{0.0308}{\sqrt{\mathrm{T}}} \AA$
4 $\frac{30.8}{\sqrt{\mathrm{T}}} \AA$
Dual nature of radiation and Matter

142507 The de-Broglie wavelength of an electron, $\alpha$ particle and a proton all having the same kinetic energy is respectively given as $\lambda_{\mathrm{e}}, \lambda_{\alpha}$ and $\lambda_{\mathrm{p}}$. Then which of the following is not true?

1 $\lambda_{\mathrm{e}} \lt \lambda_{\mathrm{p}}$
2 $\lambda_{\mathrm{p}}>\lambda_{\alpha}$
3 $\lambda_{\mathrm{e}}>\lambda_{\alpha}$
4 $\lambda_{\alpha} \lt \lambda_{\mathrm{p}} \lt \lambda_{\mathrm{e}}$