142424 If ' $\lambda_{1}$ ' and ' $\lambda_{2}$ ' are the wavelengths of deBroglie waves for electrons in first and second Bohr orbits in hydrogen atom, then $\left(\frac{\lambda_{1}}{\lambda_{2}}\right)$ is equal to (Energy in $1^{\text {st }}$ Bohr orbit $\left.=13.6 \mathrm{eV}\right)$
142424 If ' $\lambda_{1}$ ' and ' $\lambda_{2}$ ' are the wavelengths of deBroglie waves for electrons in first and second Bohr orbits in hydrogen atom, then $\left(\frac{\lambda_{1}}{\lambda_{2}}\right)$ is equal to (Energy in $1^{\text {st }}$ Bohr orbit $\left.=13.6 \mathrm{eV}\right)$
142424 If ' $\lambda_{1}$ ' and ' $\lambda_{2}$ ' are the wavelengths of deBroglie waves for electrons in first and second Bohr orbits in hydrogen atom, then $\left(\frac{\lambda_{1}}{\lambda_{2}}\right)$ is equal to (Energy in $1^{\text {st }}$ Bohr orbit $\left.=13.6 \mathrm{eV}\right)$
142424 If ' $\lambda_{1}$ ' and ' $\lambda_{2}$ ' are the wavelengths of deBroglie waves for electrons in first and second Bohr orbits in hydrogen atom, then $\left(\frac{\lambda_{1}}{\lambda_{2}}\right)$ is equal to (Energy in $1^{\text {st }}$ Bohr orbit $\left.=13.6 \mathrm{eV}\right)$
142424 If ' $\lambda_{1}$ ' and ' $\lambda_{2}$ ' are the wavelengths of deBroglie waves for electrons in first and second Bohr orbits in hydrogen atom, then $\left(\frac{\lambda_{1}}{\lambda_{2}}\right)$ is equal to (Energy in $1^{\text {st }}$ Bohr orbit $\left.=13.6 \mathrm{eV}\right)$