Wave Nature Of Light Of Matter (de-Broglie)
Dual nature of radiation and Matter

142426 Graph shows the variation of de-Broglie wavelength $(\lambda)$ versus $\frac{1}{\sqrt{V}}$, where ' $V$ ' is the accelerating potential for four particles carrying same charge but of masses $m_{1}, m_{2}, m_{3}$, $\mathrm{m}_{4}$. Which particle has a smaller mass?

1 $\mathrm{m}_{1}$
2 $\mathrm{m}_{3}$
3 $\mathrm{m}_{4}$
4 $\mathrm{m}_{2}$
Dual nature of radiation and Matter

142428 According to de-Broglie hypothesis if an electron of mass ' $m$ ' is accelerated by potential difference ' $V$ ', then associated wavelength is ' $\lambda$ '. When a proton of mass ' $M$ ' is accelerated through potential difference of ' $9 \mathrm{~V}$ ', then the wavelength associated with it, is

1 $\lambda \sqrt{\frac{M}{m}}$
2 $\lambda \sqrt{\frac{\mathrm{m}}{\mathrm{M}}}$
3 $\frac{\lambda}{3} \sqrt{\frac{\mathrm{M}}{\mathrm{m}}}$
4 $\frac{\lambda}{3} \sqrt{\frac{m}{M}}$
Dual nature of radiation and Matter

142429 How much energy is imparted to an electron so that its de-Broglie wavelength reduces from $10^{-10} \mathrm{~m}$ to $0.5 \times 10^{-10} \mathrm{~m}$ ? $(\mathrm{E}=$ energy of electron)

1 $4 \mathrm{E}$
2 $2 \mathrm{E}$
3 $\mathrm{E}$
4 $3 \mathrm{E}$
Dual nature of radiation and Matter

142430 According to de-Broglie hypothesis, the ratio of wavelength of an electron and that of photon having same energy ' $E$ ' is $(m=$ mass of electron, $c=$ velocity of light)

1 $c \times \sqrt{\frac{2 m}{E}}$
2 $\frac{1}{\mathrm{c}} \times \sqrt{\frac{2 \mathrm{~m}}{\mathrm{E}}}$
3 $\frac{1}{\mathrm{c}} \times \sqrt{\frac{\mathrm{E}}{2 \mathrm{~m}}}$
4 $c \times \sqrt{\frac{E}{2 m}}$
Dual nature of radiation and Matter

142426 Graph shows the variation of de-Broglie wavelength $(\lambda)$ versus $\frac{1}{\sqrt{V}}$, where ' $V$ ' is the accelerating potential for four particles carrying same charge but of masses $m_{1}, m_{2}, m_{3}$, $\mathrm{m}_{4}$. Which particle has a smaller mass?

1 $\mathrm{m}_{1}$
2 $\mathrm{m}_{3}$
3 $\mathrm{m}_{4}$
4 $\mathrm{m}_{2}$
Dual nature of radiation and Matter

142428 According to de-Broglie hypothesis if an electron of mass ' $m$ ' is accelerated by potential difference ' $V$ ', then associated wavelength is ' $\lambda$ '. When a proton of mass ' $M$ ' is accelerated through potential difference of ' $9 \mathrm{~V}$ ', then the wavelength associated with it, is

1 $\lambda \sqrt{\frac{M}{m}}$
2 $\lambda \sqrt{\frac{\mathrm{m}}{\mathrm{M}}}$
3 $\frac{\lambda}{3} \sqrt{\frac{\mathrm{M}}{\mathrm{m}}}$
4 $\frac{\lambda}{3} \sqrt{\frac{m}{M}}$
Dual nature of radiation and Matter

142429 How much energy is imparted to an electron so that its de-Broglie wavelength reduces from $10^{-10} \mathrm{~m}$ to $0.5 \times 10^{-10} \mathrm{~m}$ ? $(\mathrm{E}=$ energy of electron)

1 $4 \mathrm{E}$
2 $2 \mathrm{E}$
3 $\mathrm{E}$
4 $3 \mathrm{E}$
Dual nature of radiation and Matter

142430 According to de-Broglie hypothesis, the ratio of wavelength of an electron and that of photon having same energy ' $E$ ' is $(m=$ mass of electron, $c=$ velocity of light)

1 $c \times \sqrt{\frac{2 m}{E}}$
2 $\frac{1}{\mathrm{c}} \times \sqrt{\frac{2 \mathrm{~m}}{\mathrm{E}}}$
3 $\frac{1}{\mathrm{c}} \times \sqrt{\frac{\mathrm{E}}{2 \mathrm{~m}}}$
4 $c \times \sqrt{\frac{E}{2 m}}$
Dual nature of radiation and Matter

142426 Graph shows the variation of de-Broglie wavelength $(\lambda)$ versus $\frac{1}{\sqrt{V}}$, where ' $V$ ' is the accelerating potential for four particles carrying same charge but of masses $m_{1}, m_{2}, m_{3}$, $\mathrm{m}_{4}$. Which particle has a smaller mass?

1 $\mathrm{m}_{1}$
2 $\mathrm{m}_{3}$
3 $\mathrm{m}_{4}$
4 $\mathrm{m}_{2}$
Dual nature of radiation and Matter

142428 According to de-Broglie hypothesis if an electron of mass ' $m$ ' is accelerated by potential difference ' $V$ ', then associated wavelength is ' $\lambda$ '. When a proton of mass ' $M$ ' is accelerated through potential difference of ' $9 \mathrm{~V}$ ', then the wavelength associated with it, is

1 $\lambda \sqrt{\frac{M}{m}}$
2 $\lambda \sqrt{\frac{\mathrm{m}}{\mathrm{M}}}$
3 $\frac{\lambda}{3} \sqrt{\frac{\mathrm{M}}{\mathrm{m}}}$
4 $\frac{\lambda}{3} \sqrt{\frac{m}{M}}$
Dual nature of radiation and Matter

142429 How much energy is imparted to an electron so that its de-Broglie wavelength reduces from $10^{-10} \mathrm{~m}$ to $0.5 \times 10^{-10} \mathrm{~m}$ ? $(\mathrm{E}=$ energy of electron)

1 $4 \mathrm{E}$
2 $2 \mathrm{E}$
3 $\mathrm{E}$
4 $3 \mathrm{E}$
Dual nature of radiation and Matter

142430 According to de-Broglie hypothesis, the ratio of wavelength of an electron and that of photon having same energy ' $E$ ' is $(m=$ mass of electron, $c=$ velocity of light)

1 $c \times \sqrt{\frac{2 m}{E}}$
2 $\frac{1}{\mathrm{c}} \times \sqrt{\frac{2 \mathrm{~m}}{\mathrm{E}}}$
3 $\frac{1}{\mathrm{c}} \times \sqrt{\frac{\mathrm{E}}{2 \mathrm{~m}}}$
4 $c \times \sqrt{\frac{E}{2 m}}$
Dual nature of radiation and Matter

142426 Graph shows the variation of de-Broglie wavelength $(\lambda)$ versus $\frac{1}{\sqrt{V}}$, where ' $V$ ' is the accelerating potential for four particles carrying same charge but of masses $m_{1}, m_{2}, m_{3}$, $\mathrm{m}_{4}$. Which particle has a smaller mass?

1 $\mathrm{m}_{1}$
2 $\mathrm{m}_{3}$
3 $\mathrm{m}_{4}$
4 $\mathrm{m}_{2}$
Dual nature of radiation and Matter

142428 According to de-Broglie hypothesis if an electron of mass ' $m$ ' is accelerated by potential difference ' $V$ ', then associated wavelength is ' $\lambda$ '. When a proton of mass ' $M$ ' is accelerated through potential difference of ' $9 \mathrm{~V}$ ', then the wavelength associated with it, is

1 $\lambda \sqrt{\frac{M}{m}}$
2 $\lambda \sqrt{\frac{\mathrm{m}}{\mathrm{M}}}$
3 $\frac{\lambda}{3} \sqrt{\frac{\mathrm{M}}{\mathrm{m}}}$
4 $\frac{\lambda}{3} \sqrt{\frac{m}{M}}$
Dual nature of radiation and Matter

142429 How much energy is imparted to an electron so that its de-Broglie wavelength reduces from $10^{-10} \mathrm{~m}$ to $0.5 \times 10^{-10} \mathrm{~m}$ ? $(\mathrm{E}=$ energy of electron)

1 $4 \mathrm{E}$
2 $2 \mathrm{E}$
3 $\mathrm{E}$
4 $3 \mathrm{E}$
Dual nature of radiation and Matter

142430 According to de-Broglie hypothesis, the ratio of wavelength of an electron and that of photon having same energy ' $E$ ' is $(m=$ mass of electron, $c=$ velocity of light)

1 $c \times \sqrt{\frac{2 m}{E}}$
2 $\frac{1}{\mathrm{c}} \times \sqrt{\frac{2 \mathrm{~m}}{\mathrm{E}}}$
3 $\frac{1}{\mathrm{c}} \times \sqrt{\frac{\mathrm{E}}{2 \mathrm{~m}}}$
4 $c \times \sqrt{\frac{E}{2 m}}$