142413
If the particles listed below all have the same kinetic energy, which one would possess the shortest de Broglie wavelength?
1 Deuteron
2 $\alpha$-particle
3 Proton
4 Electron
Explanation:
B We know, the de- Broglie wavelength, $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mk}}}$ Where, $\mathrm{m}$ is mass and $\mathrm{k}$ is kinetic energy. All charged particle have same kinetic energy (Given) $\therefore \lambda \propto \frac{1}{\sqrt{\mathrm{m}}}$ As, $\mathrm{m}_{\text {electron }} \lt \mathrm{m}_{\text {proton }} \lt \mathrm{m}_{\text {deutron }} \lt \mathrm{m}_{\alpha \text {-particle }}$ $\therefore \lambda_{\text {electron }}>\lambda_{\text {proton }}>\lambda_{\text {deutron }}>\lambda_{\alpha-\text { particle }}$ Hence, $\alpha$-particle has the shortest de-Broglie wavelength.
Shift-I
Dual nature of radiation and Matter
142414
A proton and an alpha particle are accelerated through the same potential difference. The ratio of the wavelengths associated with proton and alpha particle respectively is
1 $1: 2 \sqrt{2}$
2 $2: 1$
3 $2 \sqrt{2}: 1$
4 $4: 1$
Explanation:
C Let the mass of the proton be $\mathrm{m}_{\mathrm{p}}$ and the momentum of the proton is given by- $\mathrm{p}=\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{K}}$ The de - Broglie wavelength will be- $\lambda_{\mathrm{p}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{K}}} \quad\left(\because \mathrm{K}=\mathrm{q}_{\mathrm{p}} \mathrm{V}\right)$ Therefore, $\lambda_{\mathrm{P}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{q}_{\mathrm{p}} \mathrm{V}}}$ Similarly, For alpha particle - $\lambda_{\alpha}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\alpha} \mathrm{q}_{\alpha} \mathrm{V}}}$ $\lambda_{\alpha}=\frac{\mathrm{h}}{\sqrt{2 \times 4 \mathrm{~m}_{\mathrm{p}} \times 2 \mathrm{q}_{\mathrm{p}} \times \mathrm{V}}}$ $\left(\because \mathrm{q}_{\alpha}=2 \mathrm{q}_{\mathrm{p}}, \mathrm{m}_{\alpha}=4 \mathrm{~m}_{\mathrm{p}}\right)$ Now, the ratio is - $\frac{\lambda_{\mathrm{p}}}{\lambda_{\alpha}}=\frac{\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{q}_{\mathrm{p}} \mathrm{V}}}}{\frac{\mathrm{h}}{\sqrt{2 \times 4 \mathrm{~m}_{\mathrm{p}} \times 2 \mathrm{q}_{\mathrm{p}} \times \mathrm{V}}}}$ $\frac{\lambda_{\mathrm{P}}}{\lambda_{\alpha}}=\frac{2 \sqrt{2}}{1}$ $\lambda_{\mathrm{p}}: \lambda_{\alpha}=2 \sqrt{2}: 1$
2012
Dual nature of radiation and Matter
142416
The de Broglie wavelength associated with a proton under the influence of an electric potential of 100 volts is
1 $1.227 \AA$
2 $2.86 \mathrm{pm}$
3 $12.27 \AA$
4 $1.146 \times 10^{-21} \mathrm{~m}$
Explanation:
B Given, potential (V) $=100 \mathrm{~V}$ Mass of proton $(\mathrm{m})=1.672 \times 10^{-27} \mathrm{~kg}$ Charge of proton $(q)=1.6 \times 10^{-19} \mathrm{C}$ We know that, de - Broglie wavelength $\lambda=\frac{\mathrm{h}}{\mathrm{p}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mqV}}}$ $\lambda=\frac{6.6 \times 10^{-34}}{\sqrt{2\left(1.672 \times 10^{-27}\right)\left(1.6 \times 10^{-19}\right) \times 100}}$ $\lambda=2.853 \times 10^{-12} \mathrm{~m}$ $\lambda=2.86 \mathrm{pm}$
AP EAMCET-19.08.2021
Dual nature of radiation and Matter
142417
The de-Broglie wavelength of an electron having kinetic energy $100 \mathrm{eV}$ is [Use $\mathrm{h}=4.14 \times$ $10^{-15} \mathrm{eV}$, mass of electron $=\frac{0.5 \times 10^{6}}{\mathrm{c}^{2}} \mathrm{eV}, 1 \mathrm{pm}=$ $10^{-12} \mathrm{ml}$
1 $150.1 \mathrm{pm}$
2 $124.2 \mathrm{pm}$
3 $115.5 \mathrm{pm}$
4 $120.8 \mathrm{pm}$
Explanation:
B Given Kinetic Energy $=100 \mathrm{eV}$ $\mathrm{h}=4.14 \times 10^{-15} \mathrm{eV}$ mass of electron, $\mathrm{m}=\frac{0.5 \times 10^{6}}{\mathrm{c}^{2}}$ $1 \mathrm{pm} .=10^{-12} \mathrm{~m}$. We know that, $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mKE}}}$ $\lambda=\frac{4.14 \times 10^{-15} \times \mathrm{c}}{\sqrt{2 \times 0.5 \times 10^{6} \times 100}}$ $\lambda=\frac{4.14 \times 10^{-15} \times 3 \times 10^{8}}{\sqrt{10^{8}}}$ $\lambda=12.42 \times 10^{-11} \mathrm{~m}$ $\lambda=124.2 \times 10^{-12} \mathrm{~m}$ $\lambda=124.2 \mathrm{pm}$
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Dual nature of radiation and Matter
142413
If the particles listed below all have the same kinetic energy, which one would possess the shortest de Broglie wavelength?
1 Deuteron
2 $\alpha$-particle
3 Proton
4 Electron
Explanation:
B We know, the de- Broglie wavelength, $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mk}}}$ Where, $\mathrm{m}$ is mass and $\mathrm{k}$ is kinetic energy. All charged particle have same kinetic energy (Given) $\therefore \lambda \propto \frac{1}{\sqrt{\mathrm{m}}}$ As, $\mathrm{m}_{\text {electron }} \lt \mathrm{m}_{\text {proton }} \lt \mathrm{m}_{\text {deutron }} \lt \mathrm{m}_{\alpha \text {-particle }}$ $\therefore \lambda_{\text {electron }}>\lambda_{\text {proton }}>\lambda_{\text {deutron }}>\lambda_{\alpha-\text { particle }}$ Hence, $\alpha$-particle has the shortest de-Broglie wavelength.
Shift-I
Dual nature of radiation and Matter
142414
A proton and an alpha particle are accelerated through the same potential difference. The ratio of the wavelengths associated with proton and alpha particle respectively is
1 $1: 2 \sqrt{2}$
2 $2: 1$
3 $2 \sqrt{2}: 1$
4 $4: 1$
Explanation:
C Let the mass of the proton be $\mathrm{m}_{\mathrm{p}}$ and the momentum of the proton is given by- $\mathrm{p}=\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{K}}$ The de - Broglie wavelength will be- $\lambda_{\mathrm{p}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{K}}} \quad\left(\because \mathrm{K}=\mathrm{q}_{\mathrm{p}} \mathrm{V}\right)$ Therefore, $\lambda_{\mathrm{P}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{q}_{\mathrm{p}} \mathrm{V}}}$ Similarly, For alpha particle - $\lambda_{\alpha}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\alpha} \mathrm{q}_{\alpha} \mathrm{V}}}$ $\lambda_{\alpha}=\frac{\mathrm{h}}{\sqrt{2 \times 4 \mathrm{~m}_{\mathrm{p}} \times 2 \mathrm{q}_{\mathrm{p}} \times \mathrm{V}}}$ $\left(\because \mathrm{q}_{\alpha}=2 \mathrm{q}_{\mathrm{p}}, \mathrm{m}_{\alpha}=4 \mathrm{~m}_{\mathrm{p}}\right)$ Now, the ratio is - $\frac{\lambda_{\mathrm{p}}}{\lambda_{\alpha}}=\frac{\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{q}_{\mathrm{p}} \mathrm{V}}}}{\frac{\mathrm{h}}{\sqrt{2 \times 4 \mathrm{~m}_{\mathrm{p}} \times 2 \mathrm{q}_{\mathrm{p}} \times \mathrm{V}}}}$ $\frac{\lambda_{\mathrm{P}}}{\lambda_{\alpha}}=\frac{2 \sqrt{2}}{1}$ $\lambda_{\mathrm{p}}: \lambda_{\alpha}=2 \sqrt{2}: 1$
2012
Dual nature of radiation and Matter
142416
The de Broglie wavelength associated with a proton under the influence of an electric potential of 100 volts is
1 $1.227 \AA$
2 $2.86 \mathrm{pm}$
3 $12.27 \AA$
4 $1.146 \times 10^{-21} \mathrm{~m}$
Explanation:
B Given, potential (V) $=100 \mathrm{~V}$ Mass of proton $(\mathrm{m})=1.672 \times 10^{-27} \mathrm{~kg}$ Charge of proton $(q)=1.6 \times 10^{-19} \mathrm{C}$ We know that, de - Broglie wavelength $\lambda=\frac{\mathrm{h}}{\mathrm{p}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mqV}}}$ $\lambda=\frac{6.6 \times 10^{-34}}{\sqrt{2\left(1.672 \times 10^{-27}\right)\left(1.6 \times 10^{-19}\right) \times 100}}$ $\lambda=2.853 \times 10^{-12} \mathrm{~m}$ $\lambda=2.86 \mathrm{pm}$
AP EAMCET-19.08.2021
Dual nature of radiation and Matter
142417
The de-Broglie wavelength of an electron having kinetic energy $100 \mathrm{eV}$ is [Use $\mathrm{h}=4.14 \times$ $10^{-15} \mathrm{eV}$, mass of electron $=\frac{0.5 \times 10^{6}}{\mathrm{c}^{2}} \mathrm{eV}, 1 \mathrm{pm}=$ $10^{-12} \mathrm{ml}$
1 $150.1 \mathrm{pm}$
2 $124.2 \mathrm{pm}$
3 $115.5 \mathrm{pm}$
4 $120.8 \mathrm{pm}$
Explanation:
B Given Kinetic Energy $=100 \mathrm{eV}$ $\mathrm{h}=4.14 \times 10^{-15} \mathrm{eV}$ mass of electron, $\mathrm{m}=\frac{0.5 \times 10^{6}}{\mathrm{c}^{2}}$ $1 \mathrm{pm} .=10^{-12} \mathrm{~m}$. We know that, $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mKE}}}$ $\lambda=\frac{4.14 \times 10^{-15} \times \mathrm{c}}{\sqrt{2 \times 0.5 \times 10^{6} \times 100}}$ $\lambda=\frac{4.14 \times 10^{-15} \times 3 \times 10^{8}}{\sqrt{10^{8}}}$ $\lambda=12.42 \times 10^{-11} \mathrm{~m}$ $\lambda=124.2 \times 10^{-12} \mathrm{~m}$ $\lambda=124.2 \mathrm{pm}$
142413
If the particles listed below all have the same kinetic energy, which one would possess the shortest de Broglie wavelength?
1 Deuteron
2 $\alpha$-particle
3 Proton
4 Electron
Explanation:
B We know, the de- Broglie wavelength, $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mk}}}$ Where, $\mathrm{m}$ is mass and $\mathrm{k}$ is kinetic energy. All charged particle have same kinetic energy (Given) $\therefore \lambda \propto \frac{1}{\sqrt{\mathrm{m}}}$ As, $\mathrm{m}_{\text {electron }} \lt \mathrm{m}_{\text {proton }} \lt \mathrm{m}_{\text {deutron }} \lt \mathrm{m}_{\alpha \text {-particle }}$ $\therefore \lambda_{\text {electron }}>\lambda_{\text {proton }}>\lambda_{\text {deutron }}>\lambda_{\alpha-\text { particle }}$ Hence, $\alpha$-particle has the shortest de-Broglie wavelength.
Shift-I
Dual nature of radiation and Matter
142414
A proton and an alpha particle are accelerated through the same potential difference. The ratio of the wavelengths associated with proton and alpha particle respectively is
1 $1: 2 \sqrt{2}$
2 $2: 1$
3 $2 \sqrt{2}: 1$
4 $4: 1$
Explanation:
C Let the mass of the proton be $\mathrm{m}_{\mathrm{p}}$ and the momentum of the proton is given by- $\mathrm{p}=\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{K}}$ The de - Broglie wavelength will be- $\lambda_{\mathrm{p}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{K}}} \quad\left(\because \mathrm{K}=\mathrm{q}_{\mathrm{p}} \mathrm{V}\right)$ Therefore, $\lambda_{\mathrm{P}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{q}_{\mathrm{p}} \mathrm{V}}}$ Similarly, For alpha particle - $\lambda_{\alpha}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\alpha} \mathrm{q}_{\alpha} \mathrm{V}}}$ $\lambda_{\alpha}=\frac{\mathrm{h}}{\sqrt{2 \times 4 \mathrm{~m}_{\mathrm{p}} \times 2 \mathrm{q}_{\mathrm{p}} \times \mathrm{V}}}$ $\left(\because \mathrm{q}_{\alpha}=2 \mathrm{q}_{\mathrm{p}}, \mathrm{m}_{\alpha}=4 \mathrm{~m}_{\mathrm{p}}\right)$ Now, the ratio is - $\frac{\lambda_{\mathrm{p}}}{\lambda_{\alpha}}=\frac{\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{q}_{\mathrm{p}} \mathrm{V}}}}{\frac{\mathrm{h}}{\sqrt{2 \times 4 \mathrm{~m}_{\mathrm{p}} \times 2 \mathrm{q}_{\mathrm{p}} \times \mathrm{V}}}}$ $\frac{\lambda_{\mathrm{P}}}{\lambda_{\alpha}}=\frac{2 \sqrt{2}}{1}$ $\lambda_{\mathrm{p}}: \lambda_{\alpha}=2 \sqrt{2}: 1$
2012
Dual nature of radiation and Matter
142416
The de Broglie wavelength associated with a proton under the influence of an electric potential of 100 volts is
1 $1.227 \AA$
2 $2.86 \mathrm{pm}$
3 $12.27 \AA$
4 $1.146 \times 10^{-21} \mathrm{~m}$
Explanation:
B Given, potential (V) $=100 \mathrm{~V}$ Mass of proton $(\mathrm{m})=1.672 \times 10^{-27} \mathrm{~kg}$ Charge of proton $(q)=1.6 \times 10^{-19} \mathrm{C}$ We know that, de - Broglie wavelength $\lambda=\frac{\mathrm{h}}{\mathrm{p}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mqV}}}$ $\lambda=\frac{6.6 \times 10^{-34}}{\sqrt{2\left(1.672 \times 10^{-27}\right)\left(1.6 \times 10^{-19}\right) \times 100}}$ $\lambda=2.853 \times 10^{-12} \mathrm{~m}$ $\lambda=2.86 \mathrm{pm}$
AP EAMCET-19.08.2021
Dual nature of radiation and Matter
142417
The de-Broglie wavelength of an electron having kinetic energy $100 \mathrm{eV}$ is [Use $\mathrm{h}=4.14 \times$ $10^{-15} \mathrm{eV}$, mass of electron $=\frac{0.5 \times 10^{6}}{\mathrm{c}^{2}} \mathrm{eV}, 1 \mathrm{pm}=$ $10^{-12} \mathrm{ml}$
1 $150.1 \mathrm{pm}$
2 $124.2 \mathrm{pm}$
3 $115.5 \mathrm{pm}$
4 $120.8 \mathrm{pm}$
Explanation:
B Given Kinetic Energy $=100 \mathrm{eV}$ $\mathrm{h}=4.14 \times 10^{-15} \mathrm{eV}$ mass of electron, $\mathrm{m}=\frac{0.5 \times 10^{6}}{\mathrm{c}^{2}}$ $1 \mathrm{pm} .=10^{-12} \mathrm{~m}$. We know that, $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mKE}}}$ $\lambda=\frac{4.14 \times 10^{-15} \times \mathrm{c}}{\sqrt{2 \times 0.5 \times 10^{6} \times 100}}$ $\lambda=\frac{4.14 \times 10^{-15} \times 3 \times 10^{8}}{\sqrt{10^{8}}}$ $\lambda=12.42 \times 10^{-11} \mathrm{~m}$ $\lambda=124.2 \times 10^{-12} \mathrm{~m}$ $\lambda=124.2 \mathrm{pm}$
142413
If the particles listed below all have the same kinetic energy, which one would possess the shortest de Broglie wavelength?
1 Deuteron
2 $\alpha$-particle
3 Proton
4 Electron
Explanation:
B We know, the de- Broglie wavelength, $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mk}}}$ Where, $\mathrm{m}$ is mass and $\mathrm{k}$ is kinetic energy. All charged particle have same kinetic energy (Given) $\therefore \lambda \propto \frac{1}{\sqrt{\mathrm{m}}}$ As, $\mathrm{m}_{\text {electron }} \lt \mathrm{m}_{\text {proton }} \lt \mathrm{m}_{\text {deutron }} \lt \mathrm{m}_{\alpha \text {-particle }}$ $\therefore \lambda_{\text {electron }}>\lambda_{\text {proton }}>\lambda_{\text {deutron }}>\lambda_{\alpha-\text { particle }}$ Hence, $\alpha$-particle has the shortest de-Broglie wavelength.
Shift-I
Dual nature of radiation and Matter
142414
A proton and an alpha particle are accelerated through the same potential difference. The ratio of the wavelengths associated with proton and alpha particle respectively is
1 $1: 2 \sqrt{2}$
2 $2: 1$
3 $2 \sqrt{2}: 1$
4 $4: 1$
Explanation:
C Let the mass of the proton be $\mathrm{m}_{\mathrm{p}}$ and the momentum of the proton is given by- $\mathrm{p}=\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{K}}$ The de - Broglie wavelength will be- $\lambda_{\mathrm{p}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{K}}} \quad\left(\because \mathrm{K}=\mathrm{q}_{\mathrm{p}} \mathrm{V}\right)$ Therefore, $\lambda_{\mathrm{P}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{q}_{\mathrm{p}} \mathrm{V}}}$ Similarly, For alpha particle - $\lambda_{\alpha}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\alpha} \mathrm{q}_{\alpha} \mathrm{V}}}$ $\lambda_{\alpha}=\frac{\mathrm{h}}{\sqrt{2 \times 4 \mathrm{~m}_{\mathrm{p}} \times 2 \mathrm{q}_{\mathrm{p}} \times \mathrm{V}}}$ $\left(\because \mathrm{q}_{\alpha}=2 \mathrm{q}_{\mathrm{p}}, \mathrm{m}_{\alpha}=4 \mathrm{~m}_{\mathrm{p}}\right)$ Now, the ratio is - $\frac{\lambda_{\mathrm{p}}}{\lambda_{\alpha}}=\frac{\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{q}_{\mathrm{p}} \mathrm{V}}}}{\frac{\mathrm{h}}{\sqrt{2 \times 4 \mathrm{~m}_{\mathrm{p}} \times 2 \mathrm{q}_{\mathrm{p}} \times \mathrm{V}}}}$ $\frac{\lambda_{\mathrm{P}}}{\lambda_{\alpha}}=\frac{2 \sqrt{2}}{1}$ $\lambda_{\mathrm{p}}: \lambda_{\alpha}=2 \sqrt{2}: 1$
2012
Dual nature of radiation and Matter
142416
The de Broglie wavelength associated with a proton under the influence of an electric potential of 100 volts is
1 $1.227 \AA$
2 $2.86 \mathrm{pm}$
3 $12.27 \AA$
4 $1.146 \times 10^{-21} \mathrm{~m}$
Explanation:
B Given, potential (V) $=100 \mathrm{~V}$ Mass of proton $(\mathrm{m})=1.672 \times 10^{-27} \mathrm{~kg}$ Charge of proton $(q)=1.6 \times 10^{-19} \mathrm{C}$ We know that, de - Broglie wavelength $\lambda=\frac{\mathrm{h}}{\mathrm{p}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mqV}}}$ $\lambda=\frac{6.6 \times 10^{-34}}{\sqrt{2\left(1.672 \times 10^{-27}\right)\left(1.6 \times 10^{-19}\right) \times 100}}$ $\lambda=2.853 \times 10^{-12} \mathrm{~m}$ $\lambda=2.86 \mathrm{pm}$
AP EAMCET-19.08.2021
Dual nature of radiation and Matter
142417
The de-Broglie wavelength of an electron having kinetic energy $100 \mathrm{eV}$ is [Use $\mathrm{h}=4.14 \times$ $10^{-15} \mathrm{eV}$, mass of electron $=\frac{0.5 \times 10^{6}}{\mathrm{c}^{2}} \mathrm{eV}, 1 \mathrm{pm}=$ $10^{-12} \mathrm{ml}$
1 $150.1 \mathrm{pm}$
2 $124.2 \mathrm{pm}$
3 $115.5 \mathrm{pm}$
4 $120.8 \mathrm{pm}$
Explanation:
B Given Kinetic Energy $=100 \mathrm{eV}$ $\mathrm{h}=4.14 \times 10^{-15} \mathrm{eV}$ mass of electron, $\mathrm{m}=\frac{0.5 \times 10^{6}}{\mathrm{c}^{2}}$ $1 \mathrm{pm} .=10^{-12} \mathrm{~m}$. We know that, $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mKE}}}$ $\lambda=\frac{4.14 \times 10^{-15} \times \mathrm{c}}{\sqrt{2 \times 0.5 \times 10^{6} \times 100}}$ $\lambda=\frac{4.14 \times 10^{-15} \times 3 \times 10^{8}}{\sqrt{10^{8}}}$ $\lambda=12.42 \times 10^{-11} \mathrm{~m}$ $\lambda=124.2 \times 10^{-12} \mathrm{~m}$ $\lambda=124.2 \mathrm{pm}$