Wave Nature Of Light Of Matter (de-Broglie)
Dual nature of radiation and Matter

142400 A particle of mass $2 \times 10^{-27} \mathrm{~kg}$ has de-Broglie wavelength of $3.3 \times 10^{-10} \mathrm{~m}$. The kinetic energy of this particle is
(Plank's Constant $\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}$ )

1 $5 \times 10^{-20} \mathrm{~J}$
2 $8 \times 10^{-20} \mathrm{~J}$
3 $1 \times 10^{-21} \mathrm{~J}$
4 $6 \times 10^{-22} \mathrm{~J}$
Dual nature of radiation and Matter

142401 A nucleus of mass $M$ at rest splits into two parts having masses $\frac{M^{\prime}}{3}$ and $\frac{2 M^{\prime}}{3} \quad M^{\prime} \lt $ M).The ratio of de Broglie wavelength of two parts will be:

1 $1: 2$
2 $2: 1$
3 $1: 1$
4 $2: 3$
Dual nature of radiation and Matter

142402 The equation $\lambda=\frac{1.227}{\mathrm{x}} \mathrm{nm}$ can be used to
find the de-Broglie wavelength of an electron. In this equation $x$ stands for: where, $\mathbf{m}=$ mass of electron
$\mathrm{P}=$ momentum of electron
$K=$ Kinetic energy of electron
$V=$ Accelerating potential in volts for electron

1 $\sqrt{\mathrm{mK}}$
2 $\sqrt{\mathrm{P}}$
3 $\sqrt{\mathrm{K}}$
4 $\sqrt{\mathrm{V}}$
Dual nature of radiation and Matter

142403 The de Broglie wavelengths for an electron and a photon are $\lambda_{e}$ and $\lambda_{p}$ respectively. For the same kinetic energy of electron and photon, which of the following presents the correct relation between the de Broglie wavelengths of two?

1 $\lambda_{\mathrm{p}} \propto \lambda_{\mathrm{e}}^{2}$
2 $\lambda_{\mathrm{p}} \propto \lambda_{\mathrm{e}}$
3 $\lambda_{\mathrm{p}} \propto \sqrt{\lambda_{\mathrm{e}}}$
4 $\lambda_{\mathrm{p}} \propto \sqrt{\frac{1}{\lambda_{\mathrm{e}}}}$
Dual nature of radiation and Matter

142404 An $\alpha$ particle and a carbon 12 atom has same kinetic energy $K$. The ratio of their de-Broglie wavelengths $\left(\lambda \alpha: \lambda_{\mathrm{C} 12}\right)$ is :

1 $1: \sqrt{3}$
2 $\sqrt{3}: 1$
3 $3: 1$
4 $2: \sqrt{3}$
Dual nature of radiation and Matter

142400 A particle of mass $2 \times 10^{-27} \mathrm{~kg}$ has de-Broglie wavelength of $3.3 \times 10^{-10} \mathrm{~m}$. The kinetic energy of this particle is
(Plank's Constant $\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}$ )

1 $5 \times 10^{-20} \mathrm{~J}$
2 $8 \times 10^{-20} \mathrm{~J}$
3 $1 \times 10^{-21} \mathrm{~J}$
4 $6 \times 10^{-22} \mathrm{~J}$
Dual nature of radiation and Matter

142401 A nucleus of mass $M$ at rest splits into two parts having masses $\frac{M^{\prime}}{3}$ and $\frac{2 M^{\prime}}{3} \quad M^{\prime} \lt $ M).The ratio of de Broglie wavelength of two parts will be:

1 $1: 2$
2 $2: 1$
3 $1: 1$
4 $2: 3$
Dual nature of radiation and Matter

142402 The equation $\lambda=\frac{1.227}{\mathrm{x}} \mathrm{nm}$ can be used to
find the de-Broglie wavelength of an electron. In this equation $x$ stands for: where, $\mathbf{m}=$ mass of electron
$\mathrm{P}=$ momentum of electron
$K=$ Kinetic energy of electron
$V=$ Accelerating potential in volts for electron

1 $\sqrt{\mathrm{mK}}$
2 $\sqrt{\mathrm{P}}$
3 $\sqrt{\mathrm{K}}$
4 $\sqrt{\mathrm{V}}$
Dual nature of radiation and Matter

142403 The de Broglie wavelengths for an electron and a photon are $\lambda_{e}$ and $\lambda_{p}$ respectively. For the same kinetic energy of electron and photon, which of the following presents the correct relation between the de Broglie wavelengths of two?

1 $\lambda_{\mathrm{p}} \propto \lambda_{\mathrm{e}}^{2}$
2 $\lambda_{\mathrm{p}} \propto \lambda_{\mathrm{e}}$
3 $\lambda_{\mathrm{p}} \propto \sqrt{\lambda_{\mathrm{e}}}$
4 $\lambda_{\mathrm{p}} \propto \sqrt{\frac{1}{\lambda_{\mathrm{e}}}}$
Dual nature of radiation and Matter

142404 An $\alpha$ particle and a carbon 12 atom has same kinetic energy $K$. The ratio of their de-Broglie wavelengths $\left(\lambda \alpha: \lambda_{\mathrm{C} 12}\right)$ is :

1 $1: \sqrt{3}$
2 $\sqrt{3}: 1$
3 $3: 1$
4 $2: \sqrt{3}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142400 A particle of mass $2 \times 10^{-27} \mathrm{~kg}$ has de-Broglie wavelength of $3.3 \times 10^{-10} \mathrm{~m}$. The kinetic energy of this particle is
(Plank's Constant $\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}$ )

1 $5 \times 10^{-20} \mathrm{~J}$
2 $8 \times 10^{-20} \mathrm{~J}$
3 $1 \times 10^{-21} \mathrm{~J}$
4 $6 \times 10^{-22} \mathrm{~J}$
Dual nature of radiation and Matter

142401 A nucleus of mass $M$ at rest splits into two parts having masses $\frac{M^{\prime}}{3}$ and $\frac{2 M^{\prime}}{3} \quad M^{\prime} \lt $ M).The ratio of de Broglie wavelength of two parts will be:

1 $1: 2$
2 $2: 1$
3 $1: 1$
4 $2: 3$
Dual nature of radiation and Matter

142402 The equation $\lambda=\frac{1.227}{\mathrm{x}} \mathrm{nm}$ can be used to
find the de-Broglie wavelength of an electron. In this equation $x$ stands for: where, $\mathbf{m}=$ mass of electron
$\mathrm{P}=$ momentum of electron
$K=$ Kinetic energy of electron
$V=$ Accelerating potential in volts for electron

1 $\sqrt{\mathrm{mK}}$
2 $\sqrt{\mathrm{P}}$
3 $\sqrt{\mathrm{K}}$
4 $\sqrt{\mathrm{V}}$
Dual nature of radiation and Matter

142403 The de Broglie wavelengths for an electron and a photon are $\lambda_{e}$ and $\lambda_{p}$ respectively. For the same kinetic energy of electron and photon, which of the following presents the correct relation between the de Broglie wavelengths of two?

1 $\lambda_{\mathrm{p}} \propto \lambda_{\mathrm{e}}^{2}$
2 $\lambda_{\mathrm{p}} \propto \lambda_{\mathrm{e}}$
3 $\lambda_{\mathrm{p}} \propto \sqrt{\lambda_{\mathrm{e}}}$
4 $\lambda_{\mathrm{p}} \propto \sqrt{\frac{1}{\lambda_{\mathrm{e}}}}$
Dual nature of radiation and Matter

142404 An $\alpha$ particle and a carbon 12 atom has same kinetic energy $K$. The ratio of their de-Broglie wavelengths $\left(\lambda \alpha: \lambda_{\mathrm{C} 12}\right)$ is :

1 $1: \sqrt{3}$
2 $\sqrt{3}: 1$
3 $3: 1$
4 $2: \sqrt{3}$
Dual nature of radiation and Matter

142400 A particle of mass $2 \times 10^{-27} \mathrm{~kg}$ has de-Broglie wavelength of $3.3 \times 10^{-10} \mathrm{~m}$. The kinetic energy of this particle is
(Plank's Constant $\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}$ )

1 $5 \times 10^{-20} \mathrm{~J}$
2 $8 \times 10^{-20} \mathrm{~J}$
3 $1 \times 10^{-21} \mathrm{~J}$
4 $6 \times 10^{-22} \mathrm{~J}$
Dual nature of radiation and Matter

142401 A nucleus of mass $M$ at rest splits into two parts having masses $\frac{M^{\prime}}{3}$ and $\frac{2 M^{\prime}}{3} \quad M^{\prime} \lt $ M).The ratio of de Broglie wavelength of two parts will be:

1 $1: 2$
2 $2: 1$
3 $1: 1$
4 $2: 3$
Dual nature of radiation and Matter

142402 The equation $\lambda=\frac{1.227}{\mathrm{x}} \mathrm{nm}$ can be used to
find the de-Broglie wavelength of an electron. In this equation $x$ stands for: where, $\mathbf{m}=$ mass of electron
$\mathrm{P}=$ momentum of electron
$K=$ Kinetic energy of electron
$V=$ Accelerating potential in volts for electron

1 $\sqrt{\mathrm{mK}}$
2 $\sqrt{\mathrm{P}}$
3 $\sqrt{\mathrm{K}}$
4 $\sqrt{\mathrm{V}}$
Dual nature of radiation and Matter

142403 The de Broglie wavelengths for an electron and a photon are $\lambda_{e}$ and $\lambda_{p}$ respectively. For the same kinetic energy of electron and photon, which of the following presents the correct relation between the de Broglie wavelengths of two?

1 $\lambda_{\mathrm{p}} \propto \lambda_{\mathrm{e}}^{2}$
2 $\lambda_{\mathrm{p}} \propto \lambda_{\mathrm{e}}$
3 $\lambda_{\mathrm{p}} \propto \sqrt{\lambda_{\mathrm{e}}}$
4 $\lambda_{\mathrm{p}} \propto \sqrt{\frac{1}{\lambda_{\mathrm{e}}}}$
Dual nature of radiation and Matter

142404 An $\alpha$ particle and a carbon 12 atom has same kinetic energy $K$. The ratio of their de-Broglie wavelengths $\left(\lambda \alpha: \lambda_{\mathrm{C} 12}\right)$ is :

1 $1: \sqrt{3}$
2 $\sqrt{3}: 1$
3 $3: 1$
4 $2: \sqrt{3}$
Dual nature of radiation and Matter

142400 A particle of mass $2 \times 10^{-27} \mathrm{~kg}$ has de-Broglie wavelength of $3.3 \times 10^{-10} \mathrm{~m}$. The kinetic energy of this particle is
(Plank's Constant $\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}$ )

1 $5 \times 10^{-20} \mathrm{~J}$
2 $8 \times 10^{-20} \mathrm{~J}$
3 $1 \times 10^{-21} \mathrm{~J}$
4 $6 \times 10^{-22} \mathrm{~J}$
Dual nature of radiation and Matter

142401 A nucleus of mass $M$ at rest splits into two parts having masses $\frac{M^{\prime}}{3}$ and $\frac{2 M^{\prime}}{3} \quad M^{\prime} \lt $ M).The ratio of de Broglie wavelength of two parts will be:

1 $1: 2$
2 $2: 1$
3 $1: 1$
4 $2: 3$
Dual nature of radiation and Matter

142402 The equation $\lambda=\frac{1.227}{\mathrm{x}} \mathrm{nm}$ can be used to
find the de-Broglie wavelength of an electron. In this equation $x$ stands for: where, $\mathbf{m}=$ mass of electron
$\mathrm{P}=$ momentum of electron
$K=$ Kinetic energy of electron
$V=$ Accelerating potential in volts for electron

1 $\sqrt{\mathrm{mK}}$
2 $\sqrt{\mathrm{P}}$
3 $\sqrt{\mathrm{K}}$
4 $\sqrt{\mathrm{V}}$
Dual nature of radiation and Matter

142403 The de Broglie wavelengths for an electron and a photon are $\lambda_{e}$ and $\lambda_{p}$ respectively. For the same kinetic energy of electron and photon, which of the following presents the correct relation between the de Broglie wavelengths of two?

1 $\lambda_{\mathrm{p}} \propto \lambda_{\mathrm{e}}^{2}$
2 $\lambda_{\mathrm{p}} \propto \lambda_{\mathrm{e}}$
3 $\lambda_{\mathrm{p}} \propto \sqrt{\lambda_{\mathrm{e}}}$
4 $\lambda_{\mathrm{p}} \propto \sqrt{\frac{1}{\lambda_{\mathrm{e}}}}$
Dual nature of radiation and Matter

142404 An $\alpha$ particle and a carbon 12 atom has same kinetic energy $K$. The ratio of their de-Broglie wavelengths $\left(\lambda \alpha: \lambda_{\mathrm{C} 12}\right)$ is :

1 $1: \sqrt{3}$
2 $\sqrt{3}: 1$
3 $3: 1$
4 $2: \sqrt{3}$