142402
The equation $\lambda=\frac{1.227}{\mathrm{x}} \mathrm{nm}$ can be used to
find the de-Broglie wavelength of an electron. In this equation $x$ stands for: where, $\mathbf{m}=$ mass of electron
$\mathrm{P}=$ momentum of electron
$K=$ Kinetic energy of electron
$V=$ Accelerating potential in volts for electron
142402
The equation $\lambda=\frac{1.227}{\mathrm{x}} \mathrm{nm}$ can be used to
find the de-Broglie wavelength of an electron. In this equation $x$ stands for: where, $\mathbf{m}=$ mass of electron
$\mathrm{P}=$ momentum of electron
$K=$ Kinetic energy of electron
$V=$ Accelerating potential in volts for electron
142402
The equation $\lambda=\frac{1.227}{\mathrm{x}} \mathrm{nm}$ can be used to
find the de-Broglie wavelength of an electron. In this equation $x$ stands for: where, $\mathbf{m}=$ mass of electron
$\mathrm{P}=$ momentum of electron
$K=$ Kinetic energy of electron
$V=$ Accelerating potential in volts for electron
142402
The equation $\lambda=\frac{1.227}{\mathrm{x}} \mathrm{nm}$ can be used to
find the de-Broglie wavelength of an electron. In this equation $x$ stands for: where, $\mathbf{m}=$ mass of electron
$\mathrm{P}=$ momentum of electron
$K=$ Kinetic energy of electron
$V=$ Accelerating potential in volts for electron
142402
The equation $\lambda=\frac{1.227}{\mathrm{x}} \mathrm{nm}$ can be used to
find the de-Broglie wavelength of an electron. In this equation $x$ stands for: where, $\mathbf{m}=$ mass of electron
$\mathrm{P}=$ momentum of electron
$K=$ Kinetic energy of electron
$V=$ Accelerating potential in volts for electron