Wave Nature Of Light Of Matter (de-Broglie)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142396 The momentum of a proton, a neutron and an electron are in the ratio $3: 2: 1$, then their respective de Broglie wavelengths are in the ratio

1 $1: 1: 1$
2 $2: 3: 6$
3 $1: 2: 3$
4 $6: 3: 2$
5 $4: 2: 1$
Dual nature of radiation and Matter

142397 A particle of mass $1 \times 10^{-30} \mathrm{~kg}$ and electric change $1.6 \times 10^{-19} \mathrm{C}$ has de-Broglie wavelength $660 \mathrm{~nm}$. Then kinetic energy of this particle is-

1 $4.2 \times 10^{-6} \mathrm{eV}$
2 $2.5 \times 10^{-6} \mathrm{eV}$
3 $1.3 \times 10^{-6} \mathrm{eV}$
4 $3.1 \times 10^{-6} \mathrm{eV}$
Dual nature of radiation and Matter

142398 The mass of a particle is $\mathbf{1 6}$ times heavier than another particle and they have the same kinetic energy. The de-Broglie wavelength of the lighter particle is

1 Same as the heavier particle's wavelength
2 2 times the heavier particle's wavelength
3 4 times the heavier particle's wavelength
4 1/4 times the heavier particle's wavelength
Dual nature of radiation and Matter

142399 An electron in the hydrogen atom excites from $2^{\text {nd }}$ orbit to $4^{\text {th }}$ orbit then the change in angular momentum of the electron is
\(\left(\right.\) Planck's constant \(\left.h=6.64 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)\)

1 $2.11 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
2 $1.05 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
3 $0.57 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
4 $4.22 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
Dual nature of radiation and Matter

142396 The momentum of a proton, a neutron and an electron are in the ratio $3: 2: 1$, then their respective de Broglie wavelengths are in the ratio

1 $1: 1: 1$
2 $2: 3: 6$
3 $1: 2: 3$
4 $6: 3: 2$
5 $4: 2: 1$
Dual nature of radiation and Matter

142397 A particle of mass $1 \times 10^{-30} \mathrm{~kg}$ and electric change $1.6 \times 10^{-19} \mathrm{C}$ has de-Broglie wavelength $660 \mathrm{~nm}$. Then kinetic energy of this particle is-

1 $4.2 \times 10^{-6} \mathrm{eV}$
2 $2.5 \times 10^{-6} \mathrm{eV}$
3 $1.3 \times 10^{-6} \mathrm{eV}$
4 $3.1 \times 10^{-6} \mathrm{eV}$
Dual nature of radiation and Matter

142398 The mass of a particle is $\mathbf{1 6}$ times heavier than another particle and they have the same kinetic energy. The de-Broglie wavelength of the lighter particle is

1 Same as the heavier particle's wavelength
2 2 times the heavier particle's wavelength
3 4 times the heavier particle's wavelength
4 1/4 times the heavier particle's wavelength
Dual nature of radiation and Matter

142399 An electron in the hydrogen atom excites from $2^{\text {nd }}$ orbit to $4^{\text {th }}$ orbit then the change in angular momentum of the electron is
\(\left(\right.\) Planck's constant \(\left.h=6.64 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)\)

1 $2.11 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
2 $1.05 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
3 $0.57 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
4 $4.22 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
Dual nature of radiation and Matter

142396 The momentum of a proton, a neutron and an electron are in the ratio $3: 2: 1$, then their respective de Broglie wavelengths are in the ratio

1 $1: 1: 1$
2 $2: 3: 6$
3 $1: 2: 3$
4 $6: 3: 2$
5 $4: 2: 1$
Dual nature of radiation and Matter

142397 A particle of mass $1 \times 10^{-30} \mathrm{~kg}$ and electric change $1.6 \times 10^{-19} \mathrm{C}$ has de-Broglie wavelength $660 \mathrm{~nm}$. Then kinetic energy of this particle is-

1 $4.2 \times 10^{-6} \mathrm{eV}$
2 $2.5 \times 10^{-6} \mathrm{eV}$
3 $1.3 \times 10^{-6} \mathrm{eV}$
4 $3.1 \times 10^{-6} \mathrm{eV}$
Dual nature of radiation and Matter

142398 The mass of a particle is $\mathbf{1 6}$ times heavier than another particle and they have the same kinetic energy. The de-Broglie wavelength of the lighter particle is

1 Same as the heavier particle's wavelength
2 2 times the heavier particle's wavelength
3 4 times the heavier particle's wavelength
4 1/4 times the heavier particle's wavelength
Dual nature of radiation and Matter

142399 An electron in the hydrogen atom excites from $2^{\text {nd }}$ orbit to $4^{\text {th }}$ orbit then the change in angular momentum of the electron is
\(\left(\right.\) Planck's constant \(\left.h=6.64 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)\)

1 $2.11 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
2 $1.05 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
3 $0.57 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
4 $4.22 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142396 The momentum of a proton, a neutron and an electron are in the ratio $3: 2: 1$, then their respective de Broglie wavelengths are in the ratio

1 $1: 1: 1$
2 $2: 3: 6$
3 $1: 2: 3$
4 $6: 3: 2$
5 $4: 2: 1$
Dual nature of radiation and Matter

142397 A particle of mass $1 \times 10^{-30} \mathrm{~kg}$ and electric change $1.6 \times 10^{-19} \mathrm{C}$ has de-Broglie wavelength $660 \mathrm{~nm}$. Then kinetic energy of this particle is-

1 $4.2 \times 10^{-6} \mathrm{eV}$
2 $2.5 \times 10^{-6} \mathrm{eV}$
3 $1.3 \times 10^{-6} \mathrm{eV}$
4 $3.1 \times 10^{-6} \mathrm{eV}$
Dual nature of radiation and Matter

142398 The mass of a particle is $\mathbf{1 6}$ times heavier than another particle and they have the same kinetic energy. The de-Broglie wavelength of the lighter particle is

1 Same as the heavier particle's wavelength
2 2 times the heavier particle's wavelength
3 4 times the heavier particle's wavelength
4 1/4 times the heavier particle's wavelength
Dual nature of radiation and Matter

142399 An electron in the hydrogen atom excites from $2^{\text {nd }}$ orbit to $4^{\text {th }}$ orbit then the change in angular momentum of the electron is
\(\left(\right.\) Planck's constant \(\left.h=6.64 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)\)

1 $2.11 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
2 $1.05 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
3 $0.57 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
4 $4.22 \times 10^{-34} \mathrm{~J}-\mathrm{s}$