NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Sets, Relation and Function
117325
Considering only the principal values of the trigonometric functions, the domain of the function \(f(x)=\cos ^{-1}\left(\frac{x^2-4 x+2}{x^2+3}\right)\) is :
1 \(\left(-\infty, \frac{1}{4}\right]\)
2 \(\left[-\frac{1}{4}, \infty\right)\)
3 \(\left(\frac{-1}{3}, \infty\right)\)
4 \(\left(-\infty, \frac{1}{3}\right]\)
Explanation:
B The domain of the function. \(f(x)=\cos ^{-1}\left(\frac{x^2-4 x+2}{x^2+3}\right) \) \(\therefore-1 \leq \frac{x^2-4 x+2}{x^2+3} \leq 1 \) \(\Rightarrow-x^2-3 \leq x^2-4 x+2 \text { and } x^2-4 x+2 \leq x^2+3\) \(\Rightarrow-2 x^2+4 x-5 \leq 0 \text { and }-4 x \leq 1\) \(\Rightarrow 2 x^2-4 x+5 \geq 0 \text { and } 4 x \geq-1\) \(\Rightarrow x \in R x \geq-\frac{1}{4}\)So, domain is \(\left[-\frac{1}{4}, \infty\right]\)
Shift-I
Sets, Relation and Function
117326
If the domain of the function \(f(x)=\frac{[x]}{1+x^2}\), where \([x]\) is greatest integer \(\leq x\), is \([2,6)\), then its range is
117325
Considering only the principal values of the trigonometric functions, the domain of the function \(f(x)=\cos ^{-1}\left(\frac{x^2-4 x+2}{x^2+3}\right)\) is :
1 \(\left(-\infty, \frac{1}{4}\right]\)
2 \(\left[-\frac{1}{4}, \infty\right)\)
3 \(\left(\frac{-1}{3}, \infty\right)\)
4 \(\left(-\infty, \frac{1}{3}\right]\)
Explanation:
B The domain of the function. \(f(x)=\cos ^{-1}\left(\frac{x^2-4 x+2}{x^2+3}\right) \) \(\therefore-1 \leq \frac{x^2-4 x+2}{x^2+3} \leq 1 \) \(\Rightarrow-x^2-3 \leq x^2-4 x+2 \text { and } x^2-4 x+2 \leq x^2+3\) \(\Rightarrow-2 x^2+4 x-5 \leq 0 \text { and }-4 x \leq 1\) \(\Rightarrow 2 x^2-4 x+5 \geq 0 \text { and } 4 x \geq-1\) \(\Rightarrow x \in R x \geq-\frac{1}{4}\)So, domain is \(\left[-\frac{1}{4}, \infty\right]\)
Shift-I
Sets, Relation and Function
117326
If the domain of the function \(f(x)=\frac{[x]}{1+x^2}\), where \([x]\) is greatest integer \(\leq x\), is \([2,6)\), then its range is
117325
Considering only the principal values of the trigonometric functions, the domain of the function \(f(x)=\cos ^{-1}\left(\frac{x^2-4 x+2}{x^2+3}\right)\) is :
1 \(\left(-\infty, \frac{1}{4}\right]\)
2 \(\left[-\frac{1}{4}, \infty\right)\)
3 \(\left(\frac{-1}{3}, \infty\right)\)
4 \(\left(-\infty, \frac{1}{3}\right]\)
Explanation:
B The domain of the function. \(f(x)=\cos ^{-1}\left(\frac{x^2-4 x+2}{x^2+3}\right) \) \(\therefore-1 \leq \frac{x^2-4 x+2}{x^2+3} \leq 1 \) \(\Rightarrow-x^2-3 \leq x^2-4 x+2 \text { and } x^2-4 x+2 \leq x^2+3\) \(\Rightarrow-2 x^2+4 x-5 \leq 0 \text { and }-4 x \leq 1\) \(\Rightarrow 2 x^2-4 x+5 \geq 0 \text { and } 4 x \geq-1\) \(\Rightarrow x \in R x \geq-\frac{1}{4}\)So, domain is \(\left[-\frac{1}{4}, \infty\right]\)
Shift-I
Sets, Relation and Function
117326
If the domain of the function \(f(x)=\frac{[x]}{1+x^2}\), where \([x]\) is greatest integer \(\leq x\), is \([2,6)\), then its range is
117325
Considering only the principal values of the trigonometric functions, the domain of the function \(f(x)=\cos ^{-1}\left(\frac{x^2-4 x+2}{x^2+3}\right)\) is :
1 \(\left(-\infty, \frac{1}{4}\right]\)
2 \(\left[-\frac{1}{4}, \infty\right)\)
3 \(\left(\frac{-1}{3}, \infty\right)\)
4 \(\left(-\infty, \frac{1}{3}\right]\)
Explanation:
B The domain of the function. \(f(x)=\cos ^{-1}\left(\frac{x^2-4 x+2}{x^2+3}\right) \) \(\therefore-1 \leq \frac{x^2-4 x+2}{x^2+3} \leq 1 \) \(\Rightarrow-x^2-3 \leq x^2-4 x+2 \text { and } x^2-4 x+2 \leq x^2+3\) \(\Rightarrow-2 x^2+4 x-5 \leq 0 \text { and }-4 x \leq 1\) \(\Rightarrow 2 x^2-4 x+5 \geq 0 \text { and } 4 x \geq-1\) \(\Rightarrow x \in R x \geq-\frac{1}{4}\)So, domain is \(\left[-\frac{1}{4}, \infty\right]\)
Shift-I
Sets, Relation and Function
117326
If the domain of the function \(f(x)=\frac{[x]}{1+x^2}\), where \([x]\) is greatest integer \(\leq x\), is \([2,6)\), then its range is