117328
Let \(f: R \rightarrow R\) and \(g: R \rightarrow R\) be two functions defined by \(f(x)=\log _e\left(x^2+1\right)-e^{-x}+1\) and \(g(x)\) \(=\frac{1-2 e^{2 x}}{e^x}\). Then, for which of the following range of \(\alpha\), the inequality
\(\mathbf{f}\left(\mathbf{g}\left(\frac{(\alpha-1)^2}{3}\right)\right)>\mathbf{f}\left(\mathbf{g}\left(\alpha-\frac{5}{3}\right)\right)\) holds?
117328
Let \(f: R \rightarrow R\) and \(g: R \rightarrow R\) be two functions defined by \(f(x)=\log _e\left(x^2+1\right)-e^{-x}+1\) and \(g(x)\) \(=\frac{1-2 e^{2 x}}{e^x}\). Then, for which of the following range of \(\alpha\), the inequality
\(\mathbf{f}\left(\mathbf{g}\left(\frac{(\alpha-1)^2}{3}\right)\right)>\mathbf{f}\left(\mathbf{g}\left(\alpha-\frac{5}{3}\right)\right)\) holds?
117328
Let \(f: R \rightarrow R\) and \(g: R \rightarrow R\) be two functions defined by \(f(x)=\log _e\left(x^2+1\right)-e^{-x}+1\) and \(g(x)\) \(=\frac{1-2 e^{2 x}}{e^x}\). Then, for which of the following range of \(\alpha\), the inequality
\(\mathbf{f}\left(\mathbf{g}\left(\frac{(\alpha-1)^2}{3}\right)\right)>\mathbf{f}\left(\mathbf{g}\left(\alpha-\frac{5}{3}\right)\right)\) holds?
117328
Let \(f: R \rightarrow R\) and \(g: R \rightarrow R\) be two functions defined by \(f(x)=\log _e\left(x^2+1\right)-e^{-x}+1\) and \(g(x)\) \(=\frac{1-2 e^{2 x}}{e^x}\). Then, for which of the following range of \(\alpha\), the inequality
\(\mathbf{f}\left(\mathbf{g}\left(\frac{(\alpha-1)^2}{3}\right)\right)>\mathbf{f}\left(\mathbf{g}\left(\alpha-\frac{5}{3}\right)\right)\) holds?
117328
Let \(f: R \rightarrow R\) and \(g: R \rightarrow R\) be two functions defined by \(f(x)=\log _e\left(x^2+1\right)-e^{-x}+1\) and \(g(x)\) \(=\frac{1-2 e^{2 x}}{e^x}\). Then, for which of the following range of \(\alpha\), the inequality
\(\mathbf{f}\left(\mathbf{g}\left(\frac{(\alpha-1)^2}{3}\right)\right)>\mathbf{f}\left(\mathbf{g}\left(\alpha-\frac{5}{3}\right)\right)\) holds?