117328 Let f:R→R and g:R→R be two functions defined by f(x)=loge(x2+1)−e−x+1 and g(x) =1−2e2xex. Then, for which of the following range of α, the inequalityf(g((α−1)23))>f(g(α−53)) holds?
A Given,f(x)=loge(x2+1)−e−x+1⇒f′(x)=2xx2+1+e−x>0∀x∈R⇒f is strictly increasingg(x)=1−2e2xex=e−x−2exg′(x)=−e−x−2ex⇒g′(x)=−(2ex+e−x)<0∀x∈R⇒g is decreasingNow f(g((α−1)23))>f(g(α−53))⇒g(α−1)23>g(α−53)⇒α2−5α+6<0⇒(α−2)(α−3)<0⇒α∈(2,3)
117329 The domain of the functionf(x)=cos−1(x2−5x+6x2−9)loge(x2−3x+2) is
D The domain of the function,−1≤x2−5x+6x2−9≤1x2−5x+6x2−9−1≤0 and x2−5x+6x2−9+1≥0⇒(x−2)(x−3)(x−3)(x+3)−1≤0 and (x−2)(x−3)(x−3)(x+3)+1≥0⇒x−2x+3−1≤0 and (x−2)x+3+1≥0−5x+3≤0 and 2x+1x+3≥0⇒x>−3 and (2x+1)(1x+3)≥0⇒x∈(−3,∞) and x∈(−∞,−3)∪[−12,∞)After taking intersection -x∈[−12,∞) And, x2−3x+2>0(x−1)(x−2)>0x>1 or x>2x∈(1,∞)∪(2,∞)x2−3x+2≠1x≠3±52After taking intersection of each solution -[−12,1)∪(2,∞)−{3+52,3−52}.
117330 What is the range the function h(x)=x−2x+3 ?
B Let, y=x−2x+3yx+3y=x−2x=3y+21−y...(ii) { write x in terms of y}Domain of y in equation (ii), will be R−{1} or in other words-(−∞,1)∪(1,∞), So, range of y=x−2x+3 will be (−∞,1)∪(1,∞)
117331 If f:R→[−1,1] and g:R→A are two subjective mappings and sin(g(x)−π3)=f(x)24−f2(x), then A=
A Let, f(x)=yThen, sin(g(x)−π3)=f(x)24−f2(x),Let,⇒y24−y2=p⇒y24(4−y2)=p2⇒y2−y44=p2⇒4y2−y4=4p2⇒(y2)2−2×2×y2+22−22=−4p2⇒p2=1−14(y2−2)2∴f(x)=y∈[−1,1]⇒y2∈[0,1]∴p2∈[0,34]p∈[−32,32]So, sin(g(x)−π3)∈[−32,32]⇒g(x)−π3∈[−π3,π3]⇒g(x)∈[0,2π3]
117332 The domain of the function f(x)=4−x2[x]+2, where [x] denotes the greatest integer not more than x, is
C For f(x) to be defined,4−x2[x]+2≥0[x]+2≠0x∉−2 Case 1:4−x2<0, [x]+2<0x>±2⇒x2>4x∈(−∞,−2)∪(2,∞)Case 2:4−x2≥0,[x]+2>0x⇒x2≤4⇒x≤±2⇒x∈[−2,2]x∈[−1,∞)x∉−2x∈[−1,2]Form (i) and (ii), we get -x∈(−∞,−2)∪[−1,2]