Domain, Co-domain and Range of Function
Sets, Relation and Function

117321 If \(f(x)=\log _e\left(6-\left|x^2+x-6\right|\right)\), then domain of \(f(x)\) has how many integral values of \(x\) ?

1 5
2 4
3 Infinite
4 None of these
Sets, Relation and Function

117322 The domain of the function
\(\cos ^{-1}\left(\frac{2 \sin ^{-1}\left(\frac{1}{4 \mathrm{x}^2-1}\right)}{\pi}\right)\)
is:

1 \(\mathrm{R}-\left\{-\frac{1}{2}, \frac{1}{2}\right\}\)
2 \((-\infty,-1] \cup[1, \infty) \cup\{0\}\)
3 \(\left(-\infty,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right) \cup\{0\}\)
4 \(\left(-\infty,-\frac{1}{\sqrt{2}}\right] \cup\left[\frac{1}{\sqrt{2}}, \infty\right) \cup\{0\}\)
Sets, Relation and Function

117323 The domain of the function \(f(x)=\sin ^{-1}\left[2 x^2-3\right]\) \(+\log _2\left(\log _{\frac{1}{2}}\left(x^2-5 x+5\right)\right)\), where \([t]\) is the greatest integer function is :

1 \(\left(-\sqrt{\frac{5}{2}}, \frac{5-\sqrt{5}}{2}\right)\)
2 \(\left(\frac{5-\sqrt{5}}{2}, \frac{5+\sqrt{5}}{2}\right)\)
3 \(\left(1, \frac{5-\sqrt{5}}{2}\right)\)
4 \(\left[1, \frac{5+\sqrt{5}}{2}\right)\)
Sets, Relation and Function

117324 The range of the function \(f(x)=\sqrt{3-x}+\sqrt{2+x}\) is :

1 \([2 \sqrt{2}, \sqrt{11}]\)
2 \([\sqrt{5}, \sqrt{10}]\)
3 \([\sqrt{5}, \sqrt{13}]\)
4 \([\sqrt{2}, \sqrt{7}]\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117321 If \(f(x)=\log _e\left(6-\left|x^2+x-6\right|\right)\), then domain of \(f(x)\) has how many integral values of \(x\) ?

1 5
2 4
3 Infinite
4 None of these
Sets, Relation and Function

117322 The domain of the function
\(\cos ^{-1}\left(\frac{2 \sin ^{-1}\left(\frac{1}{4 \mathrm{x}^2-1}\right)}{\pi}\right)\)
is:

1 \(\mathrm{R}-\left\{-\frac{1}{2}, \frac{1}{2}\right\}\)
2 \((-\infty,-1] \cup[1, \infty) \cup\{0\}\)
3 \(\left(-\infty,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right) \cup\{0\}\)
4 \(\left(-\infty,-\frac{1}{\sqrt{2}}\right] \cup\left[\frac{1}{\sqrt{2}}, \infty\right) \cup\{0\}\)
Sets, Relation and Function

117323 The domain of the function \(f(x)=\sin ^{-1}\left[2 x^2-3\right]\) \(+\log _2\left(\log _{\frac{1}{2}}\left(x^2-5 x+5\right)\right)\), where \([t]\) is the greatest integer function is :

1 \(\left(-\sqrt{\frac{5}{2}}, \frac{5-\sqrt{5}}{2}\right)\)
2 \(\left(\frac{5-\sqrt{5}}{2}, \frac{5+\sqrt{5}}{2}\right)\)
3 \(\left(1, \frac{5-\sqrt{5}}{2}\right)\)
4 \(\left[1, \frac{5+\sqrt{5}}{2}\right)\)
Sets, Relation and Function

117324 The range of the function \(f(x)=\sqrt{3-x}+\sqrt{2+x}\) is :

1 \([2 \sqrt{2}, \sqrt{11}]\)
2 \([\sqrt{5}, \sqrt{10}]\)
3 \([\sqrt{5}, \sqrt{13}]\)
4 \([\sqrt{2}, \sqrt{7}]\)
Sets, Relation and Function

117321 If \(f(x)=\log _e\left(6-\left|x^2+x-6\right|\right)\), then domain of \(f(x)\) has how many integral values of \(x\) ?

1 5
2 4
3 Infinite
4 None of these
Sets, Relation and Function

117322 The domain of the function
\(\cos ^{-1}\left(\frac{2 \sin ^{-1}\left(\frac{1}{4 \mathrm{x}^2-1}\right)}{\pi}\right)\)
is:

1 \(\mathrm{R}-\left\{-\frac{1}{2}, \frac{1}{2}\right\}\)
2 \((-\infty,-1] \cup[1, \infty) \cup\{0\}\)
3 \(\left(-\infty,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right) \cup\{0\}\)
4 \(\left(-\infty,-\frac{1}{\sqrt{2}}\right] \cup\left[\frac{1}{\sqrt{2}}, \infty\right) \cup\{0\}\)
Sets, Relation and Function

117323 The domain of the function \(f(x)=\sin ^{-1}\left[2 x^2-3\right]\) \(+\log _2\left(\log _{\frac{1}{2}}\left(x^2-5 x+5\right)\right)\), where \([t]\) is the greatest integer function is :

1 \(\left(-\sqrt{\frac{5}{2}}, \frac{5-\sqrt{5}}{2}\right)\)
2 \(\left(\frac{5-\sqrt{5}}{2}, \frac{5+\sqrt{5}}{2}\right)\)
3 \(\left(1, \frac{5-\sqrt{5}}{2}\right)\)
4 \(\left[1, \frac{5+\sqrt{5}}{2}\right)\)
Sets, Relation and Function

117324 The range of the function \(f(x)=\sqrt{3-x}+\sqrt{2+x}\) is :

1 \([2 \sqrt{2}, \sqrt{11}]\)
2 \([\sqrt{5}, \sqrt{10}]\)
3 \([\sqrt{5}, \sqrt{13}]\)
4 \([\sqrt{2}, \sqrt{7}]\)
Sets, Relation and Function

117321 If \(f(x)=\log _e\left(6-\left|x^2+x-6\right|\right)\), then domain of \(f(x)\) has how many integral values of \(x\) ?

1 5
2 4
3 Infinite
4 None of these
Sets, Relation and Function

117322 The domain of the function
\(\cos ^{-1}\left(\frac{2 \sin ^{-1}\left(\frac{1}{4 \mathrm{x}^2-1}\right)}{\pi}\right)\)
is:

1 \(\mathrm{R}-\left\{-\frac{1}{2}, \frac{1}{2}\right\}\)
2 \((-\infty,-1] \cup[1, \infty) \cup\{0\}\)
3 \(\left(-\infty,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right) \cup\{0\}\)
4 \(\left(-\infty,-\frac{1}{\sqrt{2}}\right] \cup\left[\frac{1}{\sqrt{2}}, \infty\right) \cup\{0\}\)
Sets, Relation and Function

117323 The domain of the function \(f(x)=\sin ^{-1}\left[2 x^2-3\right]\) \(+\log _2\left(\log _{\frac{1}{2}}\left(x^2-5 x+5\right)\right)\), where \([t]\) is the greatest integer function is :

1 \(\left(-\sqrt{\frac{5}{2}}, \frac{5-\sqrt{5}}{2}\right)\)
2 \(\left(\frac{5-\sqrt{5}}{2}, \frac{5+\sqrt{5}}{2}\right)\)
3 \(\left(1, \frac{5-\sqrt{5}}{2}\right)\)
4 \(\left[1, \frac{5+\sqrt{5}}{2}\right)\)
Sets, Relation and Function

117324 The range of the function \(f(x)=\sqrt{3-x}+\sqrt{2+x}\) is :

1 \([2 \sqrt{2}, \sqrt{11}]\)
2 \([\sqrt{5}, \sqrt{10}]\)
3 \([\sqrt{5}, \sqrt{13}]\)
4 \([\sqrt{2}, \sqrt{7}]\)