Domain, Co-domain and Range of Function
Sets, Relation and Function

117284 The range of the function \(f(x)=\frac{x-3}{5-x}, x \neq 5\) is

1 \(\mathrm{R}-\{-1\}\)
2 \(\mathrm{R}-\{1\}\)
3 \(\mathrm{R}-\{5\}\)
4 \(\mathrm{R}-\{-5\}\)
Sets, Relation and Function

117298 If \(\frac{x^2+2 x+7}{2 x+3}\lt 6, x \in R\), then

1 \(x>11\) or \(x\lt -\frac{3}{2}\)
2 \(x>11\) or \(x\lt -1\)
3 \(-\frac{3}{2}\lt x\lt -1\)
4 \(-1\lt x\lt 11\) or \(x\lt -\frac{3}{2}\)
Sets, Relation and Function

117285 If \(R=\{(\mathbf{a}, \mathbf{b}): \mathbf{b}=\mathbf{a}-\mathbf{1}, \mathbf{a} \in \mathbf{Z}, \mathbf{5}\lt \mathbf{a}\lt 9\}\), then the range of \(R\) is

1 \(\{5,6,7\}\)
2 \(\{5,6,7,8,9\}\)
3 \(\{7,8,9\}\)
4 \(\{6,7,8\}\)
Sets, Relation and Function

117286 If \(|3 x-2| \leq \frac{1}{2}\), then \(x \in\)

1 \(\left(\frac{1}{2}, \frac{5}{6}\right)\)
2 \(\left[\frac{1}{2}, \frac{5}{6}\right)\)
3 \(\left[\frac{1}{2}, \frac{5}{6}\right]\)
4 \(\left(\frac{1}{2}, \frac{5}{6}\right]\)
Sets, Relation and Function

117284 The range of the function \(f(x)=\frac{x-3}{5-x}, x \neq 5\) is

1 \(\mathrm{R}-\{-1\}\)
2 \(\mathrm{R}-\{1\}\)
3 \(\mathrm{R}-\{5\}\)
4 \(\mathrm{R}-\{-5\}\)
Sets, Relation and Function

117298 If \(\frac{x^2+2 x+7}{2 x+3}\lt 6, x \in R\), then

1 \(x>11\) or \(x\lt -\frac{3}{2}\)
2 \(x>11\) or \(x\lt -1\)
3 \(-\frac{3}{2}\lt x\lt -1\)
4 \(-1\lt x\lt 11\) or \(x\lt -\frac{3}{2}\)
Sets, Relation and Function

117285 If \(R=\{(\mathbf{a}, \mathbf{b}): \mathbf{b}=\mathbf{a}-\mathbf{1}, \mathbf{a} \in \mathbf{Z}, \mathbf{5}\lt \mathbf{a}\lt 9\}\), then the range of \(R\) is

1 \(\{5,6,7\}\)
2 \(\{5,6,7,8,9\}\)
3 \(\{7,8,9\}\)
4 \(\{6,7,8\}\)
Sets, Relation and Function

117286 If \(|3 x-2| \leq \frac{1}{2}\), then \(x \in\)

1 \(\left(\frac{1}{2}, \frac{5}{6}\right)\)
2 \(\left[\frac{1}{2}, \frac{5}{6}\right)\)
3 \(\left[\frac{1}{2}, \frac{5}{6}\right]\)
4 \(\left(\frac{1}{2}, \frac{5}{6}\right]\)
Sets, Relation and Function

117284 The range of the function \(f(x)=\frac{x-3}{5-x}, x \neq 5\) is

1 \(\mathrm{R}-\{-1\}\)
2 \(\mathrm{R}-\{1\}\)
3 \(\mathrm{R}-\{5\}\)
4 \(\mathrm{R}-\{-5\}\)
Sets, Relation and Function

117298 If \(\frac{x^2+2 x+7}{2 x+3}\lt 6, x \in R\), then

1 \(x>11\) or \(x\lt -\frac{3}{2}\)
2 \(x>11\) or \(x\lt -1\)
3 \(-\frac{3}{2}\lt x\lt -1\)
4 \(-1\lt x\lt 11\) or \(x\lt -\frac{3}{2}\)
Sets, Relation and Function

117285 If \(R=\{(\mathbf{a}, \mathbf{b}): \mathbf{b}=\mathbf{a}-\mathbf{1}, \mathbf{a} \in \mathbf{Z}, \mathbf{5}\lt \mathbf{a}\lt 9\}\), then the range of \(R\) is

1 \(\{5,6,7\}\)
2 \(\{5,6,7,8,9\}\)
3 \(\{7,8,9\}\)
4 \(\{6,7,8\}\)
Sets, Relation and Function

117286 If \(|3 x-2| \leq \frac{1}{2}\), then \(x \in\)

1 \(\left(\frac{1}{2}, \frac{5}{6}\right)\)
2 \(\left[\frac{1}{2}, \frac{5}{6}\right)\)
3 \(\left[\frac{1}{2}, \frac{5}{6}\right]\)
4 \(\left(\frac{1}{2}, \frac{5}{6}\right]\)
Sets, Relation and Function

117284 The range of the function \(f(x)=\frac{x-3}{5-x}, x \neq 5\) is

1 \(\mathrm{R}-\{-1\}\)
2 \(\mathrm{R}-\{1\}\)
3 \(\mathrm{R}-\{5\}\)
4 \(\mathrm{R}-\{-5\}\)
Sets, Relation and Function

117298 If \(\frac{x^2+2 x+7}{2 x+3}\lt 6, x \in R\), then

1 \(x>11\) or \(x\lt -\frac{3}{2}\)
2 \(x>11\) or \(x\lt -1\)
3 \(-\frac{3}{2}\lt x\lt -1\)
4 \(-1\lt x\lt 11\) or \(x\lt -\frac{3}{2}\)
Sets, Relation and Function

117285 If \(R=\{(\mathbf{a}, \mathbf{b}): \mathbf{b}=\mathbf{a}-\mathbf{1}, \mathbf{a} \in \mathbf{Z}, \mathbf{5}\lt \mathbf{a}\lt 9\}\), then the range of \(R\) is

1 \(\{5,6,7\}\)
2 \(\{5,6,7,8,9\}\)
3 \(\{7,8,9\}\)
4 \(\{6,7,8\}\)
Sets, Relation and Function

117286 If \(|3 x-2| \leq \frac{1}{2}\), then \(x \in\)

1 \(\left(\frac{1}{2}, \frac{5}{6}\right)\)
2 \(\left[\frac{1}{2}, \frac{5}{6}\right)\)
3 \(\left[\frac{1}{2}, \frac{5}{6}\right]\)
4 \(\left(\frac{1}{2}, \frac{5}{6}\right]\)