117284 The range of the function f(x)=x−35−x,x≠5 is
A Given,f(x)=x−35−xLet, y=f(x)=x−35−x∴5y−xy=x−3⇒x+xy=5y+3∴x=5y+31+yHence, range =R−{−1}
117298 If x2+2x+72x+3<6,x∈R, then
D Given,x2+2x+72x+3<6⇒x2+2x+72x+3−6<0⇒x2+2x+7−12x−18(2x+3)<0⇒x2−10x−11(2x+3)<0⇒(x−11)(x+1)(2x+3)(2x+3)2<0⇒(x−11)(x+1)(2x+3)<0⇒−1<x<11 or x<−32
117285 If R={(a,b):b=a−1,a∈Z,5<a<9}, then the range of R is
A Given,R={(a,b):b=a−1,a∈Z,5<a<9}, ∵a=6,7,8∴a=6, b=6−1=5a=7, b=7−1=6a=8, b=8−1=7R=(6,5),(7,6)(8,7)So, range of R={5,6,7}
117286 If |3x−2|≤12, then x∈
C Given,|3x−2|≤12∴−12≤(3x−2)≤12∴−12≤3x−2 and 3x−2≤12∴32≤3x and 3x≤5212≤x and x≤56∴x∈[12,56]