Domain, Co-domain and Range of Function
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117288 The domain of the real valued function \(f(x)=\sqrt{\frac{x-2}{3-x}}\) is

1 \([2,3]\)
2 \((2,3]\)
3 \([2,3)\)
4 \((2,3)\)
Sets, Relation and Function

117290 The domain of the function
\(f(x)=\sqrt{x-\sqrt{1-x^2}}\) is

1 \(\left[-1,-\frac{1}{\sqrt{2}}\right] \cup\left[\frac{1}{\sqrt{2}}, 1\right]\)
2 \([-1,1]\)
3 \(\left[-\infty,-\frac{1}{2}\right] \cup\left[\frac{1}{\sqrt{2}},+\infty\right]\)
4 \(\left[\frac{1}{\sqrt{2}}, 1\right]\)
Sets, Relation and Function

117292 If \(e^x+e^{f(x)}=e\), then the domain of \(f(x)\) is

1 \((-\infty, 1)\)
2 \((-\infty, 0)\)
3 \((1, \infty)\)
4 None
Sets, Relation and Function

117293 \(\sin ^{-1}(\sin 5)>x^2-4 x\) holds if

1 \(x=2-\sqrt{9-2 \pi}\)
2 \(x=2+\sqrt{9-2 \pi}\)
3 \(x>2+\sqrt{9-2 \pi}\)
4 \(\mathrm{x} \in(2-\sqrt{9-2 \pi}, 2+\sqrt{9-2 \pi})\)
Sets, Relation and Function

117288 The domain of the real valued function \(f(x)=\sqrt{\frac{x-2}{3-x}}\) is

1 \([2,3]\)
2 \((2,3]\)
3 \([2,3)\)
4 \((2,3)\)
Sets, Relation and Function

117290 The domain of the function
\(f(x)=\sqrt{x-\sqrt{1-x^2}}\) is

1 \(\left[-1,-\frac{1}{\sqrt{2}}\right] \cup\left[\frac{1}{\sqrt{2}}, 1\right]\)
2 \([-1,1]\)
3 \(\left[-\infty,-\frac{1}{2}\right] \cup\left[\frac{1}{\sqrt{2}},+\infty\right]\)
4 \(\left[\frac{1}{\sqrt{2}}, 1\right]\)
Sets, Relation and Function

117292 If \(e^x+e^{f(x)}=e\), then the domain of \(f(x)\) is

1 \((-\infty, 1)\)
2 \((-\infty, 0)\)
3 \((1, \infty)\)
4 None
Sets, Relation and Function

117293 \(\sin ^{-1}(\sin 5)>x^2-4 x\) holds if

1 \(x=2-\sqrt{9-2 \pi}\)
2 \(x=2+\sqrt{9-2 \pi}\)
3 \(x>2+\sqrt{9-2 \pi}\)
4 \(\mathrm{x} \in(2-\sqrt{9-2 \pi}, 2+\sqrt{9-2 \pi})\)
Sets, Relation and Function

117288 The domain of the real valued function \(f(x)=\sqrt{\frac{x-2}{3-x}}\) is

1 \([2,3]\)
2 \((2,3]\)
3 \([2,3)\)
4 \((2,3)\)
Sets, Relation and Function

117290 The domain of the function
\(f(x)=\sqrt{x-\sqrt{1-x^2}}\) is

1 \(\left[-1,-\frac{1}{\sqrt{2}}\right] \cup\left[\frac{1}{\sqrt{2}}, 1\right]\)
2 \([-1,1]\)
3 \(\left[-\infty,-\frac{1}{2}\right] \cup\left[\frac{1}{\sqrt{2}},+\infty\right]\)
4 \(\left[\frac{1}{\sqrt{2}}, 1\right]\)
Sets, Relation and Function

117292 If \(e^x+e^{f(x)}=e\), then the domain of \(f(x)\) is

1 \((-\infty, 1)\)
2 \((-\infty, 0)\)
3 \((1, \infty)\)
4 None
Sets, Relation and Function

117293 \(\sin ^{-1}(\sin 5)>x^2-4 x\) holds if

1 \(x=2-\sqrt{9-2 \pi}\)
2 \(x=2+\sqrt{9-2 \pi}\)
3 \(x>2+\sqrt{9-2 \pi}\)
4 \(\mathrm{x} \in(2-\sqrt{9-2 \pi}, 2+\sqrt{9-2 \pi})\)
Sets, Relation and Function

117288 The domain of the real valued function \(f(x)=\sqrt{\frac{x-2}{3-x}}\) is

1 \([2,3]\)
2 \((2,3]\)
3 \([2,3)\)
4 \((2,3)\)
Sets, Relation and Function

117290 The domain of the function
\(f(x)=\sqrt{x-\sqrt{1-x^2}}\) is

1 \(\left[-1,-\frac{1}{\sqrt{2}}\right] \cup\left[\frac{1}{\sqrt{2}}, 1\right]\)
2 \([-1,1]\)
3 \(\left[-\infty,-\frac{1}{2}\right] \cup\left[\frac{1}{\sqrt{2}},+\infty\right]\)
4 \(\left[\frac{1}{\sqrt{2}}, 1\right]\)
Sets, Relation and Function

117292 If \(e^x+e^{f(x)}=e\), then the domain of \(f(x)\) is

1 \((-\infty, 1)\)
2 \((-\infty, 0)\)
3 \((1, \infty)\)
4 None
Sets, Relation and Function

117293 \(\sin ^{-1}(\sin 5)>x^2-4 x\) holds if

1 \(x=2-\sqrt{9-2 \pi}\)
2 \(x=2+\sqrt{9-2 \pi}\)
3 \(x>2+\sqrt{9-2 \pi}\)
4 \(\mathrm{x} \in(2-\sqrt{9-2 \pi}, 2+\sqrt{9-2 \pi})\)