Domain, Co-domain and Range of Function
Sets, Relation and Function

117294 The domain and range of the function \(f\) given by \(f(x)=2-|x-5|\) is

1 Domain \(=\mathrm{R}^{+}\), Range \(=(-\infty, 1]\)
2 Domain \(=\mathrm{R}\), Range \(=(-\infty, 2]\)
3 Domain \(=\mathrm{R}\), Range \(=(-\infty, 2)\)
4 Domain \(=\mathrm{R}^{+}\), Range \(=(-\infty, 2]\)
Sets, Relation and Function

117295 The domain of the function
\(f(x)=\frac{1}{\log _{10}(1-x)}+\sqrt{x+2} \text { is }\)

1 \(]-3,-2.5[\cap]-2.5,-2[\)
2 \([-2,0[\cup] 0,1[\)
3 \(] 0,1[\)
4 None of the above
Sets, Relation and Function

117296 The domain of the function \(f(x)=\frac{\sqrt{4-x^2}}{\sin ^{-1}(2-x)}\) is

1 \([0,2]\)
2 \([0,2)\)
3 \([1,2)\)
4 \([1,2]\)
Sets, Relation and Function

117297 If \(D\) is the set of all real \(x\) such that \(1-e^{(1 / x)-1}\) is positive, then \(D\) is equal to

1 \((-\infty, 1]\)
2 \((-\infty, 0)\)
3 \((1, \infty)\)
4 \((-\infty, 0) \cup(1, \infty)\)
Sets, Relation and Function

117299 Domain of the function \(f(x)=\log _x \cos x\), is

1 \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\{1\}\)
2 \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{1\}\)
3 \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\)
4 None of these
Sets, Relation and Function

117294 The domain and range of the function \(f\) given by \(f(x)=2-|x-5|\) is

1 Domain \(=\mathrm{R}^{+}\), Range \(=(-\infty, 1]\)
2 Domain \(=\mathrm{R}\), Range \(=(-\infty, 2]\)
3 Domain \(=\mathrm{R}\), Range \(=(-\infty, 2)\)
4 Domain \(=\mathrm{R}^{+}\), Range \(=(-\infty, 2]\)
Sets, Relation and Function

117295 The domain of the function
\(f(x)=\frac{1}{\log _{10}(1-x)}+\sqrt{x+2} \text { is }\)

1 \(]-3,-2.5[\cap]-2.5,-2[\)
2 \([-2,0[\cup] 0,1[\)
3 \(] 0,1[\)
4 None of the above
Sets, Relation and Function

117296 The domain of the function \(f(x)=\frac{\sqrt{4-x^2}}{\sin ^{-1}(2-x)}\) is

1 \([0,2]\)
2 \([0,2)\)
3 \([1,2)\)
4 \([1,2]\)
Sets, Relation and Function

117297 If \(D\) is the set of all real \(x\) such that \(1-e^{(1 / x)-1}\) is positive, then \(D\) is equal to

1 \((-\infty, 1]\)
2 \((-\infty, 0)\)
3 \((1, \infty)\)
4 \((-\infty, 0) \cup(1, \infty)\)
Sets, Relation and Function

117299 Domain of the function \(f(x)=\log _x \cos x\), is

1 \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\{1\}\)
2 \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{1\}\)
3 \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\)
4 None of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117294 The domain and range of the function \(f\) given by \(f(x)=2-|x-5|\) is

1 Domain \(=\mathrm{R}^{+}\), Range \(=(-\infty, 1]\)
2 Domain \(=\mathrm{R}\), Range \(=(-\infty, 2]\)
3 Domain \(=\mathrm{R}\), Range \(=(-\infty, 2)\)
4 Domain \(=\mathrm{R}^{+}\), Range \(=(-\infty, 2]\)
Sets, Relation and Function

117295 The domain of the function
\(f(x)=\frac{1}{\log _{10}(1-x)}+\sqrt{x+2} \text { is }\)

1 \(]-3,-2.5[\cap]-2.5,-2[\)
2 \([-2,0[\cup] 0,1[\)
3 \(] 0,1[\)
4 None of the above
Sets, Relation and Function

117296 The domain of the function \(f(x)=\frac{\sqrt{4-x^2}}{\sin ^{-1}(2-x)}\) is

1 \([0,2]\)
2 \([0,2)\)
3 \([1,2)\)
4 \([1,2]\)
Sets, Relation and Function

117297 If \(D\) is the set of all real \(x\) such that \(1-e^{(1 / x)-1}\) is positive, then \(D\) is equal to

1 \((-\infty, 1]\)
2 \((-\infty, 0)\)
3 \((1, \infty)\)
4 \((-\infty, 0) \cup(1, \infty)\)
Sets, Relation and Function

117299 Domain of the function \(f(x)=\log _x \cos x\), is

1 \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\{1\}\)
2 \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{1\}\)
3 \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\)
4 None of these
Sets, Relation and Function

117294 The domain and range of the function \(f\) given by \(f(x)=2-|x-5|\) is

1 Domain \(=\mathrm{R}^{+}\), Range \(=(-\infty, 1]\)
2 Domain \(=\mathrm{R}\), Range \(=(-\infty, 2]\)
3 Domain \(=\mathrm{R}\), Range \(=(-\infty, 2)\)
4 Domain \(=\mathrm{R}^{+}\), Range \(=(-\infty, 2]\)
Sets, Relation and Function

117295 The domain of the function
\(f(x)=\frac{1}{\log _{10}(1-x)}+\sqrt{x+2} \text { is }\)

1 \(]-3,-2.5[\cap]-2.5,-2[\)
2 \([-2,0[\cup] 0,1[\)
3 \(] 0,1[\)
4 None of the above
Sets, Relation and Function

117296 The domain of the function \(f(x)=\frac{\sqrt{4-x^2}}{\sin ^{-1}(2-x)}\) is

1 \([0,2]\)
2 \([0,2)\)
3 \([1,2)\)
4 \([1,2]\)
Sets, Relation and Function

117297 If \(D\) is the set of all real \(x\) such that \(1-e^{(1 / x)-1}\) is positive, then \(D\) is equal to

1 \((-\infty, 1]\)
2 \((-\infty, 0)\)
3 \((1, \infty)\)
4 \((-\infty, 0) \cup(1, \infty)\)
Sets, Relation and Function

117299 Domain of the function \(f(x)=\log _x \cos x\), is

1 \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\{1\}\)
2 \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{1\}\)
3 \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\)
4 None of these
Sets, Relation and Function

117294 The domain and range of the function \(f\) given by \(f(x)=2-|x-5|\) is

1 Domain \(=\mathrm{R}^{+}\), Range \(=(-\infty, 1]\)
2 Domain \(=\mathrm{R}\), Range \(=(-\infty, 2]\)
3 Domain \(=\mathrm{R}\), Range \(=(-\infty, 2)\)
4 Domain \(=\mathrm{R}^{+}\), Range \(=(-\infty, 2]\)
Sets, Relation and Function

117295 The domain of the function
\(f(x)=\frac{1}{\log _{10}(1-x)}+\sqrt{x+2} \text { is }\)

1 \(]-3,-2.5[\cap]-2.5,-2[\)
2 \([-2,0[\cup] 0,1[\)
3 \(] 0,1[\)
4 None of the above
Sets, Relation and Function

117296 The domain of the function \(f(x)=\frac{\sqrt{4-x^2}}{\sin ^{-1}(2-x)}\) is

1 \([0,2]\)
2 \([0,2)\)
3 \([1,2)\)
4 \([1,2]\)
Sets, Relation and Function

117297 If \(D\) is the set of all real \(x\) such that \(1-e^{(1 / x)-1}\) is positive, then \(D\) is equal to

1 \((-\infty, 1]\)
2 \((-\infty, 0)\)
3 \((1, \infty)\)
4 \((-\infty, 0) \cup(1, \infty)\)
Sets, Relation and Function

117299 Domain of the function \(f(x)=\log _x \cos x\), is

1 \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\{1\}\)
2 \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{1\}\)
3 \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\)
4 None of these