Domain, Co-domain and Range of Function
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117300 Range of the function \(y=\sin ^{-1}\left(\frac{x^2}{1+x^2}\right)\), is

1 \(\left(0, \frac{\pi}{2}\right)\)
2 \(\left[0, \frac{\pi}{2}\right)\)
3 \(\left(0, \frac{\pi}{2}\right]\)
4 \(\left[0, \frac{\pi}{2}\right]\)
Sets, Relation and Function

117301 If \(\left(1+\tan 1^0\right)\left(1+\tan 2^0\right) \ldots \ldots\left(1+\tan 45^0\right)=2^n\), then \(n\) is

1 22
2 24
3 23
4 12
Sets, Relation and Function

117303 The range of \(x\) for which the formula \(3 \sin ^{-1} x=\) \(\sin ^{-1}\left[x\left(3-4 x^2\right)\right]\) hold is

1 \(-\frac{1}{2} \leq \mathrm{x} \leq \frac{1}{2}\)
2 \(-\frac{1}{4} \leq \mathrm{x} \leq \frac{2}{3}\)
3 \(-\frac{1}{3} \leq \mathrm{x} \leq 1\)
4 \(-\frac{2}{3} \leq \mathrm{x} \leq \frac{2}{3}\)
Sets, Relation and Function

117304 If domain of the function \(f(x)=x^2-6 x+7\) is \((-\infty, \infty)\) then its range is

1 \([-2,3]\)
2 \((-\infty,-2]\)
3 \((-\infty, \infty)\)
4 \([-2, \infty)\)
Sets, Relation and Function

117300 Range of the function \(y=\sin ^{-1}\left(\frac{x^2}{1+x^2}\right)\), is

1 \(\left(0, \frac{\pi}{2}\right)\)
2 \(\left[0, \frac{\pi}{2}\right)\)
3 \(\left(0, \frac{\pi}{2}\right]\)
4 \(\left[0, \frac{\pi}{2}\right]\)
Sets, Relation and Function

117301 If \(\left(1+\tan 1^0\right)\left(1+\tan 2^0\right) \ldots \ldots\left(1+\tan 45^0\right)=2^n\), then \(n\) is

1 22
2 24
3 23
4 12
Sets, Relation and Function

117303 The range of \(x\) for which the formula \(3 \sin ^{-1} x=\) \(\sin ^{-1}\left[x\left(3-4 x^2\right)\right]\) hold is

1 \(-\frac{1}{2} \leq \mathrm{x} \leq \frac{1}{2}\)
2 \(-\frac{1}{4} \leq \mathrm{x} \leq \frac{2}{3}\)
3 \(-\frac{1}{3} \leq \mathrm{x} \leq 1\)
4 \(-\frac{2}{3} \leq \mathrm{x} \leq \frac{2}{3}\)
Sets, Relation and Function

117304 If domain of the function \(f(x)=x^2-6 x+7\) is \((-\infty, \infty)\) then its range is

1 \([-2,3]\)
2 \((-\infty,-2]\)
3 \((-\infty, \infty)\)
4 \([-2, \infty)\)
Sets, Relation and Function

117300 Range of the function \(y=\sin ^{-1}\left(\frac{x^2}{1+x^2}\right)\), is

1 \(\left(0, \frac{\pi}{2}\right)\)
2 \(\left[0, \frac{\pi}{2}\right)\)
3 \(\left(0, \frac{\pi}{2}\right]\)
4 \(\left[0, \frac{\pi}{2}\right]\)
Sets, Relation and Function

117301 If \(\left(1+\tan 1^0\right)\left(1+\tan 2^0\right) \ldots \ldots\left(1+\tan 45^0\right)=2^n\), then \(n\) is

1 22
2 24
3 23
4 12
Sets, Relation and Function

117303 The range of \(x\) for which the formula \(3 \sin ^{-1} x=\) \(\sin ^{-1}\left[x\left(3-4 x^2\right)\right]\) hold is

1 \(-\frac{1}{2} \leq \mathrm{x} \leq \frac{1}{2}\)
2 \(-\frac{1}{4} \leq \mathrm{x} \leq \frac{2}{3}\)
3 \(-\frac{1}{3} \leq \mathrm{x} \leq 1\)
4 \(-\frac{2}{3} \leq \mathrm{x} \leq \frac{2}{3}\)
Sets, Relation and Function

117304 If domain of the function \(f(x)=x^2-6 x+7\) is \((-\infty, \infty)\) then its range is

1 \([-2,3]\)
2 \((-\infty,-2]\)
3 \((-\infty, \infty)\)
4 \([-2, \infty)\)
Sets, Relation and Function

117300 Range of the function \(y=\sin ^{-1}\left(\frac{x^2}{1+x^2}\right)\), is

1 \(\left(0, \frac{\pi}{2}\right)\)
2 \(\left[0, \frac{\pi}{2}\right)\)
3 \(\left(0, \frac{\pi}{2}\right]\)
4 \(\left[0, \frac{\pi}{2}\right]\)
Sets, Relation and Function

117301 If \(\left(1+\tan 1^0\right)\left(1+\tan 2^0\right) \ldots \ldots\left(1+\tan 45^0\right)=2^n\), then \(n\) is

1 22
2 24
3 23
4 12
Sets, Relation and Function

117303 The range of \(x\) for which the formula \(3 \sin ^{-1} x=\) \(\sin ^{-1}\left[x\left(3-4 x^2\right)\right]\) hold is

1 \(-\frac{1}{2} \leq \mathrm{x} \leq \frac{1}{2}\)
2 \(-\frac{1}{4} \leq \mathrm{x} \leq \frac{2}{3}\)
3 \(-\frac{1}{3} \leq \mathrm{x} \leq 1\)
4 \(-\frac{2}{3} \leq \mathrm{x} \leq \frac{2}{3}\)
Sets, Relation and Function

117304 If domain of the function \(f(x)=x^2-6 x+7\) is \((-\infty, \infty)\) then its range is

1 \([-2,3]\)
2 \((-\infty,-2]\)
3 \((-\infty, \infty)\)
4 \([-2, \infty)\)