Domain, Co-domain and Range of Function
Sets, Relation and Function

117305 The domain of the
function \(f(x)=\frac{\sqrt{4-x^2}}{\cos ^{-1}(2-x)}\) is:

1 \([0,2]\)
2 \([0,2)\)
3 \([1,2)\)
4 \([1,2]\)
Sets, Relation and Function

117306 Let \(f=\left\{\left(x, \frac{x^2}{1+x^2}\right): x \in R\right\}\) be a function from \(R\) to \(R\). Determine the range of \(\boldsymbol{f}\).

1 \([0,1)\)
2 \([0,-1]\)
3 \([0,2)\)
4 None of these
Sets, Relation and Function

117307 The greatest value of
\(f(x)=(x+1)^{1 / 3}-(x-1)^{1 / 3}\) on \([0,1]\) is

1 1
2 2
3 3
4 \(\frac{1}{3}\)
Sets, Relation and Function

117308 The set of points where the function \(f(x)=x|x|\) is differentiable is

1 \((-\infty, \infty)\)
2 \((-\infty, 0) \cup(0, \infty)\)
3 \((0, \infty)\)
4 \([0, \infty]\)
Sets, Relation and Function

117305 The domain of the
function \(f(x)=\frac{\sqrt{4-x^2}}{\cos ^{-1}(2-x)}\) is:

1 \([0,2]\)
2 \([0,2)\)
3 \([1,2)\)
4 \([1,2]\)
Sets, Relation and Function

117306 Let \(f=\left\{\left(x, \frac{x^2}{1+x^2}\right): x \in R\right\}\) be a function from \(R\) to \(R\). Determine the range of \(\boldsymbol{f}\).

1 \([0,1)\)
2 \([0,-1]\)
3 \([0,2)\)
4 None of these
Sets, Relation and Function

117307 The greatest value of
\(f(x)=(x+1)^{1 / 3}-(x-1)^{1 / 3}\) on \([0,1]\) is

1 1
2 2
3 3
4 \(\frac{1}{3}\)
Sets, Relation and Function

117308 The set of points where the function \(f(x)=x|x|\) is differentiable is

1 \((-\infty, \infty)\)
2 \((-\infty, 0) \cup(0, \infty)\)
3 \((0, \infty)\)
4 \([0, \infty]\)
Sets, Relation and Function

117305 The domain of the
function \(f(x)=\frac{\sqrt{4-x^2}}{\cos ^{-1}(2-x)}\) is:

1 \([0,2]\)
2 \([0,2)\)
3 \([1,2)\)
4 \([1,2]\)
Sets, Relation and Function

117306 Let \(f=\left\{\left(x, \frac{x^2}{1+x^2}\right): x \in R\right\}\) be a function from \(R\) to \(R\). Determine the range of \(\boldsymbol{f}\).

1 \([0,1)\)
2 \([0,-1]\)
3 \([0,2)\)
4 None of these
Sets, Relation and Function

117307 The greatest value of
\(f(x)=(x+1)^{1 / 3}-(x-1)^{1 / 3}\) on \([0,1]\) is

1 1
2 2
3 3
4 \(\frac{1}{3}\)
Sets, Relation and Function

117308 The set of points where the function \(f(x)=x|x|\) is differentiable is

1 \((-\infty, \infty)\)
2 \((-\infty, 0) \cup(0, \infty)\)
3 \((0, \infty)\)
4 \([0, \infty]\)
Sets, Relation and Function

117305 The domain of the
function \(f(x)=\frac{\sqrt{4-x^2}}{\cos ^{-1}(2-x)}\) is:

1 \([0,2]\)
2 \([0,2)\)
3 \([1,2)\)
4 \([1,2]\)
Sets, Relation and Function

117306 Let \(f=\left\{\left(x, \frac{x^2}{1+x^2}\right): x \in R\right\}\) be a function from \(R\) to \(R\). Determine the range of \(\boldsymbol{f}\).

1 \([0,1)\)
2 \([0,-1]\)
3 \([0,2)\)
4 None of these
Sets, Relation and Function

117307 The greatest value of
\(f(x)=(x+1)^{1 / 3}-(x-1)^{1 / 3}\) on \([0,1]\) is

1 1
2 2
3 3
4 \(\frac{1}{3}\)
Sets, Relation and Function

117308 The set of points where the function \(f(x)=x|x|\) is differentiable is

1 \((-\infty, \infty)\)
2 \((-\infty, 0) \cup(0, \infty)\)
3 \((0, \infty)\)
4 \([0, \infty]\)